
Practical Smart Contract Sharding

with Ownership and Commutativity Analysis

George Pîrlea∗
National University of Singapore

Singapore
gpirlea@comp.nus.edu.sg

Amrit Kumar
Zilliqa Research
United Kingdom
amrit@zilliqa.com

Ilya Sergey
Yale-NUS College

National University of Singapore
Singapore

ilya.sergey@yale-nus.edu.sg

Abstract

Sharding is a popular way to achieve scalability in blockchain
protocols, increasing their throughput by partitioning the set
of transaction validators into a number of smaller commit-
tees, splitting the workload. Existing approaches for block-
chain sharding, however, do not scale well when concurrent
transactions alter the same replicated state component—a
common scenario in Ethereum-style smart contracts.

We propose a novel approach for efficiently sharding such
transactions. It is based on a folklore idea: state-manipulating
atomic operations that commute can be processed in parallel,
with their cumulative result defined deterministically, while
executing non-commuting operations requires one to own
the state they alter. We present CoSplit—a static program
analysis tool that soundly infers ownership and commutativ-
ity summaries for smart contracts and translates those sum-
maries to sharding signatures that are used by the blockchain
protocol to maximise parallelism. Our evaluation shows that
using CoSplit introduces negligible overhead to the trans-
action validation cost, while the inferred signatures allow
the system to achieve a significant increase in transaction
processing throughput for real-world smart contracts.
CCS Concepts: • Computing methodologies → Distri-

buted programming languages.
Keywords: Smart Contracts, Static Analysis, Parallelism
ACM Reference Format:

George Pîrlea, Amrit Kumar, and Ilya Sergey. 2021. Practical Smart
Contract Sharding with Ownership and Commutativity Analysis. In
Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation (PLDI ’21), June
20–25, 2021, Virtual, Canada. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3453483.3454112

∗Work partially conducted while employed at Zilliqa Research.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
PLDI ’21, June 20–25, 2021, Virtual, Canada
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8391-2/21/06.
https://doi.org/10.1145/3453483.3454112

1 Introduction

The idea of Nakamoto consensus (aka blockchain) has been
instrumental for enabling decentralised digital currencies,
such as Bitcoin [50]. The applications of blockchains have fur-
ther expanded with the wide-spread adoption of smart con-
tracts [66]—self-enforcing, self-executing protocols govern-
ing an interaction between several mutually distrusting par-
ties. The Ethereum blockchain has provided a versatile frame-
work for defining smart contracts as blockchain-replicated
stateful objects identified by their account numbers [70].
The open and decentralised nature of Nakamoto consen-

sus comes at the price of throughput scalability. At a high
level, in order for a sequence of transactions (so-called block)
to be agreed upon system-wide, the system’s participants
(so-called miners) have to validate those transactions, with
each miner executing them individually [4]. As a result,
the throughput of blockchain systems such as Bitcoin and
Ethereum does not improve, and even slightly deteriorates,
as more participants join the system: Bitcoin currently pro-
cesses up to 7 transactions per second [7], while Ethereum’s
throughput is 11.3 transactions per second. Even worse, pop-
ular smart contracts may cause high congestion, forcing
protocol participants to exclusively process transactions spe-
cific to those contracts. This phenomenon has been frequent
in Ethereum: in the past, multiple ICOs (Initial Coin Offer-
ing, a form of a crowdfunding contract) and games, such
as CryptoKitties, have rendered the system useless for any
other purposes for noticeable periods of time [15].

Sharding in blockchains. One of the most promising
approaches to increase blockchain throughput is to split the
set of miners into a number of smaller committees, so they
can process incoming transactions in parallel, subsequently
achieving a global agreement via an additional consensus
mechanism—an idea known as sharding. Sharding transac-
tion executions, as well as sharding the replicated state,
has been an active research topic recently, both in indus-
try [25, 32, 41, 53, 63, 69, 72] and academia [1, 18, 38, 47, 71].
Many of those works focus exclusively on sharding the

simplest kind of transactions—user-to-user transfers of digital
funds,—which are paramount in blockchain-based cryptocur-
rencies, while ignoring sharding of smart contracts [38, 47,
71, 72]. Existing proposals tackling smart contracts impose

1

https://doi.org/10.1145/3453483.3454112
https://doi.org/10.1145/3453483.3454112

PLDI ’21, June 20–25, 2021, Virtual, Canada George Pîrlea, Amrit Kumar, and Ilya Sergey

heavy restrictions on contract-manipulating transactions,
for instance, requiring the accounts of both the contract and
its user to be assigned the same shard, or processing all such
transactions in a specialised shard [18, 32, 41]. Other solu-
tions assume a complex cross-shard communication protocol
to reconcile possible conflicts [25, 32, 53, 63, 69], or adopt a
contract design very different from Ethereum [1].
To the best of our knowledge, none of these approaches

allows for parallel sharded executions involving the same
smart contract. That is, none solve the mentioned congestion
problem in Ethereum, caused by highly-popular contracts.
In this work, we describe a novel approach for signifi-

cantly increasing the throughput of blockchains for smart
contract-manipulating transactions. To achieve this, instead
of treating contract implementations as “black boxes” (as do
all the works mentioned above), we design a solution based
on PL techniques, specifically, on static program analysis.

Our approach. Why can user-to-user money transfers be
sharded efficiently without complex inter-shard communica-
tion, and how can we generalise (perhaps, conservatively)
this logic to shard arbitrary smart contracts?

Consider a transaction tx1 that manifests a transfer of 10
units of some digital currency from the user 𝐴 to 𝐵, and
a transaction tx2 that states that 𝐴 transfers 20 units to 𝐶 .
In order to ensure that 𝐴 does not double-spend, both tx1
and tx2 have to be executed in the same shard—the one that
owns 𝐴’s account and keeps track of 𝐴’s balance. However,
neither 𝐵 nor 𝐶 need to be owned by 𝐴’s shard: as long as
tx1 and tx2 are validated within𝐴’s shard, the positive deltas
to 𝐵 and 𝐶’s accounts can be simply broadcast through the
network, so their balances are increased accordingly with
no extra inter-shard interaction.

A CB D
A: -10 
B: +10

tx1 tx2 tx3

A: -20 
C: +20

D: -15 
C: +15

Now consider a transaction tx3, in which𝐷 transfers 15 units
to 𝐶 . Notice that it does not matter in which order tx1 and
tx3 are going to be processed, as they commute: either of
their relative orderings will increase 𝐶’s balance by 35.
The notions of state ownership and operation commuta-

tivity have been central in a number of works dedicated to
reasoning about deterministic parallelism and proving cor-
rectness of concurrent programs [21, 22, 24, 36, 42, 46, 52].
In those works, the ownership discipline determines what
parts of the shared state need to be manipulated sequentially
by the same thread, while commutativity allows certain ac-
tions to be executed in concurrent threads in parallel, with a
deterministic result. The virtues of commutative operations
have also been studied in the systems community for scal-
ing concurrent software [3, 14, 55, 58] and achieving faster
consensus in replication protocols [12, 39, 44, 49]. However,
to the best of our knowledge, no attempts to automatically

leverage commutativity in user-defined replicated computa-
tions (e.g., smart contracts) have been made to date.
In this work, we present CoSplit—a static analysis tool

that soundly infers both ownership and commutativity infor-
mation from source code of smart contracts and translates it
to sharding signatures. The signatures are used, upon the de-
ployment of a contract, to define a sharding strategy for the
contract-manipulating transactions via the following rules:
• All transactions touching parts of a contract’s state owned
by a shard S must be executed in this shard;
• Transactions executed in different shards are guaranteed
to commute. Their cumulative result can be obtained by
means of “joining” their respective contributions in a way
prescribed by the sharding signature.

These two rules allow the system to enjoy a notion of con-
sistency for parallel transaction executions adopted from
works on the semantics of concurrent revisions [8, 9, 45]:
1. Potentially conflicting contract-manipulating transactions

will be executed in some globally-agreed order.
2. Commuting transactions can be executed in parallel, as

their effect does not depend on their order.
As wewill discuss in Sec. 2, popular Ethereum-style contracts
often allow for a “logical split” of their state into disjointly
owned components, which is much more fine-grained than
assigning an entire contract to a single shard. This split
makes it possible to process transactions affecting those
contracts in parallel in different shards, thus providing a
practical solution to scale up the network throughput.

Our contributions. The contributions of this work are:
• Identifying logical state ownership and operation commu-
tativity as enabling mechanisms for sharding Ethereum-
style contracts, and demonstrating adequacy of those no-
tions for real-world Ethereum-style contracts (Sec. 2).
• A compositional static analysis that infers ownership and
commutativity signatures for contracts written in Scilla [60]
and translates them to shard allocation strategies (Sec. 3).
• An implementation of the analysis and of the algorithm for
deriving sharding strategies in the tool called CoSplit and
an end-to-end integration of CoSplit with a production-
grade sharded blockchain protocol [47, 72] (Sec. 4). The
archived software artefact is publicly available [56].
• Evaluation of parallelism enabled by CoSplit-inferred
signatures, demonstrating a consistent increase in system
throughput with increasing the number of shards (Sec. 5).

2 Motivation and Key Ideas

2.1 Contract Usage in Ethereum

To motivate the design of our approach for sharding, we
first present the trends for smart contract usage in Ethereum.
Since there are over 700 million Ethereum transactions to
date, processing all the execution traces is too computation-
ally expensive. Therefore, we selected a random sample of

2

Practical Smart Contract Sharding with Ownership and Commutativity Analysis PLDI ’21, June 20–25, 2021, Virtual, Canada

0 0.2 0.4 0.6 0.8 1
·107

0

20

40

60

80

100

Block number

Pe
rc
en
ta
ge

of
tr
an
sa
ct
io
ns

pe
rt
yp

e Transfer
Single Call
Multi-Call
Others

0 0.2 0.4 0.6 0.8 1
·107Block number

ERC20 Transfer Single Calls
Other Single Calls

Figure 1. Left: Ethereum transaction breakdown per type;
the percentage distribution is averaged over 100K block pe-
riods. Right: breakdown of single-call transactions.

16,611 blocks, containing 1.1M transactions. The sample was
collected in January 2020 and includes transactions up to
block 9.25M, representing 0.17% of the total number of trans-
actions up to that point and giving our measurements a 1%
margin of error at a 99% confidence level.1 As the left plot in
Fig. 1 shows, ordinary user-to-user transfers are on a solid
downward trend.Moreover, single-contract transactions take
up to 55% of the recent blocks in our sample.
In this work we focus on sharding single-contract trans-

actions. The right plot in Fig. 1 shows the dominance of a
specific type of such transactions that represent token trans-
fers in a special kind of contract—ERC20 token contracts [26].
ERC20 and other similar standardised contracts pose a big
bottleneck to the network throughput: each of them requires
sequential processing of all transactions that affect it.

2.2 Towards Sharding an ERC20 Contract

Fig. 2 shows a fragment of the implementation of an ERC20
token contract [26] in Ethereum’s high-level language So-
lidity [27]. The contract’s replicated state is represented by
two mutable fields: the mapping balances that contains data
about the amount of tokens owned by token holders; and the
mapping allowances that captures the amounts of tokens au-
thorised for third-party transfers by their holders. The state
manipulations are done by transactions initiated by users
(aka senders) calling one of the functions: transfer for trans-
ferring tokens, approve for granting the transfer rights for a
certain amount of tokens to a third party, and transferFrom

for transferring tokens on behalf of the user identified as
sender. The subtractions in lines 16 and 21 will fail if the
approved spender (resp. the sender) does not have enough
allowance, thus preventing double-spends.
The design of the ERC20 contract provides ample op-

portunities for shard-based parallelism. Consider the left
part of Fig. 3 that shows a fragment of the mutable ERC20
state: the balances field mapping account addresses 𝐴–𝐸
(top part of each box) to the respective token balances (bot-
tom part of the box), and allowances, which is a mapping

1The Ethereum dataset and analysis are part of the archived artefact [56].

1 contract ERC20 {
2 mapping (address => uint256) balances;
3 mapping (address => mapping (address => uint256)) allowances;
4 /* Main public functions */
5 function transfer(recipient, amount) {
6 _transfer(_msgSender(), recipient, amount);
7 return true;
8 }
9 function approve(spender, amount) {

10 _approve(_msgSender(), spender, amount);
11 return true;
12 }
13 function transferFrom(sender, recipient, amount) {
14 _transfer(sender, recipient, amount);
15 _approve(sender, _msgSender(),
16 allowances[sender][_msgSender()] - amount);
17 return true;
18 }
19 /* Auxiliary internal functions */
20 function _transfer(sender, recipient, amount) {
21 balances[sender] = balances[sender] - amount;
22 balances[recipient] = balances[recipient] + amount;
23 }
24 function _approve(owner, spender, amount) {
25 allowances[owner][spender] = amount;
26 } /* More functions */ }

Figure 2. A fragment of an ERC20 contract in Solidity.

B
balB

C
balC

A
balA

A D
allAD

E
allAEal

lo
w
an

ce
s

ba
la
nc

es

transferFrom approvetransferLegend:

tx1 tx2tx3

tx4

B
balB

C
balC

A
balA

A D
allAD

E
allAE

tx1 tx2tx3

tx4

Figure 3. Two ways to identify footprints of four ERC20
transactions: via full affected state (left) and via state affected
by non-commuting operations (right).

from addresses (e.g., 𝐴) to mappings of amounts allowed
to transfer by third parties (e.g., 𝐷 and 𝐸) on their behalf.
Now consider the following four single-contract transac-
tions accessing that state concurrently by invoking functions
from Fig. 2: tx1 = transfer𝐴 (𝐵, 𝑣1); tx2 = transfer𝐶 (𝐴, 𝑣2);
tx3 = transferFrom𝐷 (𝐴,𝐶, 𝑣3); tx4 = approve𝐴 (𝐸, 𝑣4). Here,
a subscript denotes the transaction sender’s address (ac-
cessed via _msgSender() in Fig. 2), while 𝑣𝑖 stand for various
non-negative amounts, whose exact value is not important.
All those transactions alter the contract state; the left part of
Fig. 3 shows their corresponding footprints, i.e., components
of the state that they interact with. It is easy to see that the
footprints of, e.g., tx1 and tx4 are disjoint, thus, their effects
on the contract’s state commute. Therefore, assuming the
system provides an operation to join (i.e., merge) updates

3

PLDI ’21, June 20–25, 2021, Virtual, Canada George Pîrlea, Amrit Kumar, and Ilya Sergey

on the “logically disjoint” state components, it should be
possible to execute, e.g., tx1 and tx4 in different shards.

Sharding Strategy 1: disjoint state ownership. Let us
formulate the constraints for parallel execution of the trans-
actions tx1–tx4 from Fig. 3, out of the knowledge that some
of them commute, thanks to their footprint disjointness. We
will denote byOwns(S, {f1, . . . , f𝑛}) an ownership constraint,
meaning that the shard S logically owns the contract’s state
components (fields or map entries) f1, . . . , f𝑛 and, thus, only
this shard may alter the values of those components by se-
quentially processing all the corresponding transactions.
Now consider two shards, S1 and S2 and the following

set of ownership constraints, where bal and all denote the
corresponding fields balance and allowances:{

Owns(S1, {bal[𝐴], bal[𝐵], bal[𝐶], all[𝐴] [𝐷]}),
Owns(S2, {all[𝐴] [𝐸]})

}
(1)

Clearly, S1 and S2 own disjoint portions of the contract’s
state, thus, it will be safe to assign transactions to shards as
S1 ↦→ {tx1, tx2, tx3} and S2 ↦→ {tx4}, obtain the final result
deterministically by merging their non-conflicting changes.
This sharding strategy scales formore shardswith designated
ownership of the contract’s components and larger number
of transactions with logically disjoint footprints.

Sharding Strategy 2: commutativity of addition. Even
though transaction tx2 modifies the component bal[𝐴], it
does so in a commutative fashion and, thus, cannot affect
the outcome of any other of the listed transactions (ditto
for tx1 and bal[𝐵]). With this observation, we can refine the
transaction footprints and the notion of ownership (Fig. 3,
right), allowing for a parallel execution with three shards:{

Owns(S1, {bal[𝐴], all[𝐴] [𝐷]}),
Owns(S2, {all[𝐴] [𝐸]}),Owns(S3, {bal[𝐶]})

}
(2)

In the constraints above, S1 no longer has to own bal[𝐵]
or bal[𝐶], while shard S3 now needs to own bal[𝐶]. In or-
der to perform transactions allocated as S1 ↦→ {tx1, tx3},
S2 ↦→ {tx4}, S3 ↦→ {tx2}, obtaining the same result as in
the previous case, we need to redefine the state join opera-
tion. Specifically, instead of overwriting the values in entries
bal[𝐵] and bal[𝐴] upon “disjoint merging” as before, we will
need to add up the deltas to those components resulting from
token transfers in tx1 and tx3, similarly to handling ordinary
transfers (Sec. 1).

The main idea. To summarise these observations: con-
tracts such as ERC20, whose operations only manipulate a
small part of the state, allow for parallel conflict-free execu-
tion of their operations, if these operations commute. The
ownership constraints state which parts of a contract’s state a
shard must have exclusive access to in order to execute its
operations without conflicts with other shards altering the
same contract concurrently. The join defines the way to de-
terministically reconcile outcomes of the parallel executions.

2.3 Commutativity and State Ownership

It is common to reason about operation commutativity in
terms of action traces [14]. That said, our way of thinking is
inspired by the logical abstractions used for compositional
verification of heap-manipulating programs [10, 11, 52].

In our setup, we are interested in parallelising executions
of a family of single-contract transactions over a state-space
Σ of a contract, collectively represented by a function F𝑥 :
Σ→ Σ. Here,𝑥 denotes a vector of user inputs, i.e., specifying
which contract’s function to call, as well as its inputs. Two
transactions identified by different user inputs 𝑥1 and 𝑥2
commute iff for any state 𝜎 , F𝑥1 (F𝑥2 (𝜎)) = F𝑥2 (F𝑥1 (𝜎)).

In order to enable parallelism, our goal is to identify a com-
mutative, associative, and partial operation ⊎ : Σ→ Σ→ Σ,
such that for any 𝜎1, 𝜎2 and 𝑥 , if F𝑥 (𝜎1) is defined (i.e., 𝜎1
contains at least the footprint of F𝑥) and 𝜎1 ⊎ 𝜎2 is defined,
then F𝑥 (𝜎1 ⊎ 𝜎2) = F𝑥 (𝜎1) ⊎ 𝜎2. This equality is referred
to as action locality in the program logics literature [11],
and, when it holds, it enables compositional program analy-
ses [23] and concurrency specifications [46].2 The virtue of
F𝑥 ’s locality for our purposes becomes apparent by observ-
ing the following chain of equalities for 𝜎 = 𝜎1 ⊎ 𝜎2 when
𝜎1 and 𝜎2 are such that F𝑥1 (𝜎1) and F𝑥2 (𝜎2) are defined:
F𝑥1 (F𝑥2 (𝜎)) = F𝑥1 (F𝑥2 (𝜎1 ⊎ 𝜎2)) = F𝑥1 (𝜎1 ⊎ F𝑥2 (𝜎2))

= F𝑥2 (𝜎2) ⊎ F𝑥1 (𝜎1) = F𝑥2 (𝜎2 ⊎ F𝑥1 (𝜎1))
= F𝑥2 (F𝑥1 (𝜎2 ⊎ 𝜎1)) = F𝑥2 (F𝑥1 (𝜎))

This reasoning demonstrates the desired commutativity,
and also provides a recipe for computing the final result in
a divide-and-conquer fashion by taking it to be F𝑥1 (𝜎1) ⊎
F𝑥2 (𝜎2); the order does not matter, as ⊎ is commutative and
associative. One can think of ⊎ as both the “logical split and
join” operations, while a footprint of a transaction executing
F𝑥 is the minimal part 𝜎 ′ of the contract state, which must
be owned by the shard executing it, so that F𝑥 (𝜎 ′) is defined.
Getting back to our motivating example of ERC20 shard-

ing, Strategy 1 corresponds to ⊎ taken as a disjoint union
of the entry sets of the contract’s mapping fields (let’s call
it OwnOverwrite). Strategy 2 corresponds to ⊎ defined as
a non-disjoint union with an implicit split of integer values
in map entries—this way in the case of concurrent updates,
the result can be obtained by summation of the per-shard
portions of those values (we will call it IntMerge).

2.4 Pragmatic Considerations and Technical Setup

Ethereum is the most popular smart contract platform, and a
number of other blockchain ecosystems also use the Ethereum
Virtual Machine (EVM). While it would be desirable to im-
plement our ideas directly in Ethereum, unfortunately, its
infrastructure is currently unsuitable for our purposes:
2Readers familiar with state-of-the art program logics for concurrency can
recognise that we are looking for a suitable Partial Commutative Monoid
(PCM) [11, 36, 46], which would enable framing of contract operations F𝑥 .

4

Practical Smart Contract Sharding with Ownership and Commutativity Analysis PLDI ’21, June 20–25, 2021, Virtual, Canada

(identifiers) i, f , 𝑐 ::= alpha-numeric string
(types) t ::= int | string | unit | bool | map t t | t → t | . . .
(patterns) pat ::= _ | i | constr 𝑐 pat
(expressions) e ::= val v | var i | message (i ↦→ i) | constr 𝑐 t i |

builtin blt i | let i = e1 in e2 | fun (i : t) ⇒ e |
app i i𝑗 | match i pat ⇒ e | tfun 𝛼 ⇒ e | inst i t

(statements) s ::= i1 ← i2 | i1 := i2 | i = e | i1 [i𝑘] := i2 | i1 ← i2 [i𝑘] |
i1 ← exists i2 [i𝑘] | delete i1 [i𝑘] | i1 ← &i2 |
match i pat ⇒ s | accept | send i | event i | throw

Figure 4. Scilla syntax.

• Protocol-level support. At the time of writing, the avail-
able prototype of Ethereum 2.0 [69] does not support cross-
shard transactions or smart contracts.
• Language-level support. EVMbytecode, Ethereum’s low-
level language, is difficult to analyse soundly, due to the
lack of modularity and structured control flow [70]. One
could engineer an analysis inferring ownership constraints
for Solidity [27], a high-level Ethereum language, by possi-
bly decompiling EVM contracts [31]. However, a number
of Solidity’s features (e.g., inter-contract calls) and unpre-
dictable performance of EVM decompilers make it a chal-
lenging target for an efficient sound static analysis [35].

Bringing Ethereum infrastructure to the state necessary to
deploy the described ideas would be an effort going well
beyond the scope of this paper. Instead, we implemented our
approach as a static analysis for Scilla [60]—a strongly-typed
ML-style language for smart contracts. Scilla is supported
natively (via a definitional interpreter) by an industry-scale
blockchain [47, 72] that (a) provides rudimentary infrastruc-
ture for sharding, (b) is available open-source, and (c) is
widely used and contains dozens of contracts implemented
in Scilla by users and available for evaluating our approach.

3 CoSplit Analysis in a Nutshell

3.1 The Language

Scilla [60] is aminimalistic memory- and type-safe functional
language, similar to OCaml and Haskell for an account-based
(i.e., Ethereum-style) smart contract model. Scilla provides
a very small set of state-manipulating primitives for alter-
ing contract state (i.e., reading from the blockchain state
and changing the values of contract fields). Its pure (i.e.,
side effect-free) fragment corresponds to System F [29, 57]
without recursion (but with bounded iteration). All of the
standard library as well as user-defined contract-agnostic
computations are implemented in Scilla as pure functions.
This design choice removes the need for inter-contract calls
for the sake of code reuse and makes contract analysis scale,
as pure functions need to be analysed only once.
Contracts in Scilla are encoded as communicating state-

transition systems in the style of IO-automata [48]. That is,
all interaction between contracts is done bymeans ofmessage
passing. A contract’s state changes as a result of executing

1 transition Transfer(to: ByStr20, amount: Uint)
2 get_from_bal← balances[_sender];
3 match get_from_bal with
4 | Some bal⇒
5 can_do = uint_le amount bal;
6 match can_do with
7 | True⇒
8 new_from_bal = builtin sub bal amount;
9 balances[_sender] := new_from_bal;

10 get_to_bal← balances[to];
11 new_to_bal = (match get_to_bal with
12 | Some bal⇒ builtin add bal amount
13 | None⇒ amount);
14 balances[to] := new_to_bal
15 | False⇒ (* Report a transaction failure *)
16 msg_to_recipient = {_tag : "Accepted"; _to : to; ...};
17 msg_to_sender = {_tag : "Success"; _to : _sender; ...};
18 send msg_to_recipient; send msg_to_sender

Figure 5. FungibleToken Transfer transition in Scilla.

its transitions as reactions to received messages from the
users or other contracts. While transitions in Scilla contracts
are similar to functions in Solidity, they provide stronger
encapsulation and atomicity guarantees, in particular, disal-
lowing reentrancy. This model allows one to analyse each
contract’s transitions in isolation from any other contract’s
code, thus allowing for deriving their signatures statically
without over-approximating the effects of the external calls.

Fig. 4 describes the syntax for Scilla statements and expres-
sions, and Fig. 5 shows the code for the Transfer transition of
a FungibleToken (i.e., ERC20) contract. The transition takes
one implicit argument, the address _sender of the transac-
tion originator, and two explicit arguments, the address of
the recipient and the amount of tokens to be transferred.
It reads the balance of the sender (line 2), ensures that the
sender has enough tokens to transfer (line 6), and updates
the sender (line 9) and recipient balances (line 14).

3.2 Inferring Transition Summaries

CoSplit implements a compositional inter-procedural effect
analysis [51] inferring transition summaries (a set of effects),
which describe, in a symbolic form, (1) the state footprint
of transitions and (2) the contributions of the initial values
of contract fields, read during a transition’s execution, to
the final field values. A transition’s summary is the result of
the abstract interpretation [16, 17] of the transition’s code.
These summaries help answer queries such as (1) “Does the
transition write to field f?” and (2) “Can the transition’s effect
to field f be represented as an addition of a constant to f’s
old value?”. The two types of queries correspond to our two
sharding strategies (see the discussion in Sec. 2.2).

The state footprint describes the portion of a contract state
affected by a transition (and, respectively, by a transaction
that executes it), whereas the contribution types let us decide
if writes that affect the same piece of state commute. We
explain the analysis in two stages, corresponding to the two
types of queries. The stages are intertwined in the imple-
mentation, but here we separate them to aid in presentation.

5

PLDI ’21, June 20–25, 2021, Virtual, Canada George Pîrlea, Amrit Kumar, and Ilya Sergey

(effect) 𝜀 ::= Read(f) | Write(f, 𝜏) | Condition(𝜏) |
AcceptFunds | SendMsg(𝜏) | ⊤

(contrib. type) 𝜏 ::= ⟨cs ↦→ (card, ops), p⟩ | EFun i 𝜏 | ⊤ | ⊥
(contrib. src.) cs ::= Field f | Const c | Formal i | ⊤
(cardinality) card ::= 0 | 1 | 𝜔
(precision) 𝑝 ::= Exact | Inexact
(operation) op ::= Builtin blt | Cond

(cardinality order) 0 ⊑ 1 ⊑ 𝜔

(operations order) ops1 ⊑ ops2 iff ops1 ⊂ ops2
(precision order) Exact ⊑ Inexact

0 ⊕ 𝛼 = 𝛼

1 ⊕ 1 = 𝜔

𝛼 ⊕ 𝜔 = 𝜔

0 ⊔ 𝛼 = 𝛼

1 ⊔ 1 = 1
𝛼 ⊔ 𝜔 = 𝜔

0 ⊗ 𝛼 = 0
1 ⊗ 1 = 1
𝛼 ⊗ 𝜔 = 𝜔

Figure 6. Components of CoSplit abstract domain.

3.3 State Footprints

Fig. 6 shows the CoSplit abstract domain. The first stage of
the analysis computes an over-approximation of the state
footprints of contract transitions, expressed as a set of effects
(denoted 𝜀). Effects describe how the transition interacts
with the blockchain state. For instance, the AcceptFunds
effect (contributed by the accept statement) changes both
the contract’s and the sender’s native token balances.3 Sim-
ilarly, the SendMsg effect (contributed by send) might in-
voke transitions of other contracts or send native tokens.
Finally, the Read andWrite effects describe which portions
of the contract’s own state may be accessed by the transi-
tion. For each transition, CoSplit iterates over every state-
ment in the transition’s code and determines the static over-
approximation of that statement’s effect. In some cases, this
over-approximation is the uninformative effect ⊤. Due to
Scilla’s design, the translation between statements and ef-
fects is direct. As an example, we show the analysis rules for
map reads and writes, which can be found in the top box of
Fig. 7. These rules are applied when analysing lines 2, 9, and
14 in Fig. 5. The parts shown in grey boxes , including the
rule for the non-effectful Bind statement, appear due to the
second stage of the analysis, explained below.

TheMapGet andMapUpdate rules extend the transition’s
summary Σwith the appropriate Read orWrite effect, which
identifies the portion f (for field) of the contract state that is
operated on. For map accesses, f includes the name of the
map and the symbolic names of keys i𝑘 used to index into
the map. For accesses to non-map contract fields, only the
name of the field is included.

Whereas contract fields can always be described, the keys
used to index into a map can be the result of a computation

3This can be expressed as a Write affecting the two balances, but we pre-
fer a more informative effect since balances are treated specially by the
blockchain protocol. Similar reasoning applies to SendMsg.

Bind
Γ ⊢ e : 𝜏 Γ′ = Γ, i : 𝜏
Γ; Σ ⊢ i = e⇝ Γ′; Σ

MapUpdate
Γ ⊢ i2 : 𝜏 𝑏 = CanSummarise i𝑘

𝜀 = if 𝑏 thenWrite(i1 [i𝑘], 𝜏) else ⊤

Γ ; Σ ⊢ i1 [i𝑘] := i2 ⇝ Γ ; Σ, 𝜀

MapGet
𝑏 =

(
Write(i2 [i𝑘], _) ∉ Σ

)
∧
(
CanSummarise i𝑘

)
𝜏 , 𝜀 = if 𝑏 then ⟨Field i2 [ik] ↦→ (1,∅), Exact⟩ ,Read(i2 [i𝑘]) else ⊤,⊤

Γ ; Σ ⊢ i1 ← i2 [i𝑘] ⇝ Γ, i1 : 𝜏 ; Σ, 𝜀

Literal
Γ ⊢ val 𝑙 : ⟨Const l ↦→ (1,∅), Exact⟩

Constr
𝜏 = ⊕ Γ (𝑖)

Γ ⊢ constr 𝑐 𝑡 𝑖 : 𝜏

Builtin
𝜏 ′ = ⊕ Γ (arg)

𝜏 = 𝜏′ with ops += blt
Γ ⊢ builtin blt arg : 𝜏

Fun
i = unique arg. identifier

Γ′ = Γ, i : ⟨Formal i ↦→ (1,∅), Exact⟩
Γ′ ⊢ e : 𝜏e 𝜏 = EFun i 𝜏e
Γ ⊢ fun (i : t) ⇒ e : 𝜏

Let
Γ′ = Γ, i : 𝜏1

Γ ⊢ e1 : 𝜏1 Γ′ ⊢ e2 : 𝜏
Γ ⊢ let i = e1 in e2 : 𝜏

App
ij = unique identifier for j-th arg.

Γ ⊢ f : 𝜏f ∀j, Γ ⊢ aj : 𝜏j
𝜏 = ⊕(𝜏f [ij] ⊗ 𝜏j)
Γ ⊢ app f aj : 𝜏

Match
Γ ⊢ 𝑥 : 𝜏x ∀𝑖, Γ𝑖 = binder(pat𝑖) → Γ (𝑥)

∀𝑖, Γ ∪ Γ𝑖 ⊢ e𝑖 : 𝜏i 𝜏 = MatchC(x, 𝜏x , pati, ei, 𝜏i)
Γ ⊢ match 𝑥 pat𝑖 ⇒ e𝑖 : 𝜏

Figure 7. Selected rules for statements and expressions.

and may even depend on contract state. As such, we only
assign an informative effect 𝜀 to accesses when the keys used
to index into the map are transition parameters, as they are in
Fig. 5. Moreover, for nested maps, we require that the access
is bottom-level, i.e., it touches a primitive value rather than
a map. These constraints are captured by CanSummarise.
If the access cannot be summarised, the ⊤ effect is given.
Generally, an access can be statically described whenever the
keys are not dependent on the contract state, but we limit
ourselves to keys that are transition parameters to simplify
transaction dispatch, which is described in Sec. 4.3.

3.4 Contribution Types

The summaries produced so far are sufficient to enable the
disjoint state ownership sharding strategy. But, as we have
seen, we can execute in parallel even transactions with effects
over the same state, as long as the effects commute. The
second stage of the analysis annotates the effects produced
by the first stage with contribution types (denoted 𝜏), which
help determining whether they commute. Concretely, for
every expression 𝑒 , CoSplit computes a contribution type, an
over-approximation of the set of arithmetic operations and
of the set of contract state components from the beginning
of the transition execution that contribute to 𝑒’s result.

The type 𝜏 (cf. Fig. 6) ascribed to an expression 𝑒 indicates,
which contribution sources, i.e., parts of the contract state

6

Practical Smart Contract Sharding with Ownership and Commutativity Analysis PLDI ’21, June 20–25, 2021, Virtual, Canada

Read(balances[_sender]) Read(balances[to])
Condition(balances[_sender], amount)
Write(balances[_sender], ⟨amount&balances[_sender], 1, sub⟩)
Write(balances[to], ⟨amount&balances[to], 1, add⟩)
SendMsg(funds = zero; destination = to)
SendMsg(funds = zero; destination = _sender)

Figure 8. Set of effects of the Transfer transition.

(Field f), transition parameters/constants (Const c), and
function parameters (Formal i), flow into 𝑒’s result, what
operations are applied to those sources, and how many times
each source contributes to 𝑒’s result. The precision compo-
nent 𝑝 in types records whether over-approximation of the
set of operations has taken place due to joining control flows,
i.e., the analysis has lost precision. This lets us answer ques-
tions like “Can the transition’s effect to field f be represented
as an addition of a constant to f’s old value?”. If the 𝜏 ascribed
to the value written to field f has as its only exact contri-
bution Field f ↦→ (1,Builtin add), and also some constants
and transition parameters, the answer is yes.

The importance of cardinalities. The most important
component in the type is the cardinality of Field f. If f did
not show up in 𝜏 , then the written value would be a constant,
and different writes would not commute, as they might have
potentially different values (e.g., different transition parame-
ters). Conversely, if f’s contribution was non-linear, i.e., its
cardinality is 𝜔 (“many”),4 then even though f is modified
by a commutative operation (addition), the effect would not
commute. For example, the linear function 𝑓 (𝑥) = 𝑥 + 1 com-
mutes with𝑔(𝑥) = 𝑥 +2, but does not withℎ(𝑥) = 𝑥 +𝑥 +1, as
𝑓 (ℎ(𝑎)) ≠ ℎ(𝑓 (𝑎)). The linearity (“used-once”) information
attached to contribution sources lets us ensure that opera-
tions are used in ways that guarantee commutative effects.
We lift the ⊕ operation on cardinalities to types by adding
the cardinalities of matching sources and set-unioning their
operations, ascribing to the result the ⊔ of their precisions.
For ⊗, which is defined only between a type and a single con-
tribution, we multiply the cardinalities of the arguments and
modify the other components analogously to the ⊕ lifting.

Computing contribution types. The values read from
the mutable contract state, literals, transition and contract
parameters are all contribution sources. For example, the
Literal and MapGet rules in Fig. 7 show how new contri-
bution sources are introduced. A read into a binder i1 from a
location that was not overwritten, extends the typing con-
text Γ by giving i1 the linear contribution type 𝜏 shown in
the rule. The type shows that the value of i1 is the value of
the respective “pseudo-field” i2 [i𝑘] (i.e., a map entry) at the
beginning of the transition execution. Contributions from
multiple sources are combined with their cardinalities added
up point-wise via ⊕ operator (cf. Fig. 6). For example, the

4Our cardinality domain is inspired by GHC’s cardinality analysis [61].

(constraint) oc ::= Owns(f) | UserAddr(𝑥) | NoAliases(⟨𝑥, 𝑦⟩) |
SenderShard | ContractShard | ⊥

(join) ⊎f ::= OwnOverwrite | IntMerge

Effect Constraint

⊤ ∨ SendMsg(⊤) ⊥
AcceptFunds SenderShard
SendMsg(_amount.𝜏 ≠ 0) ContractShard
SendMsg(_recipient.𝜏 = 𝑟) UserAddr(𝑟)
Read/Write(𝑚 [𝑥]),Read/Write(𝑚 [𝑦]) NoAliases(⟨𝑥, 𝑦⟩)

Figure 9. Elements of sharding signatures (top). Translation
between effects and non-ownership constraints (bottom).

application of a Builtin function adds up the contributions
from its arguments and records an application of Builtin blt
to each contribution source, recording this in the type.
Functions are given arrow types, EFun i 𝜏 , with each for-

mal parameter constituting an artificial contribution source
Formal i. When the function is applied (rule App), the ar-
row type is evaluated by substituting the formal parame-
ter’s contribution with the actual argument’s contributions,
multiplying the cardinalities. Our approach supports up to
second-order Scilla functions by expressing operations on
contribution types (⊕, ⊔, and ⊗) at the type level, and de-
ferring normalisation until the arguments are known. For
simplicity, we do not show this in the figures. Even though
Scilla provides polymorphic functions and type applications
(as in System F), they bear no significance for our analysis.

Finally, the types given to Match over-approximate the
contributions of all clauses, whose types are combined using
the MatchC operator defined as follows:

MatchC(x, 𝜏x , pati, ei, 𝜏i) ≜ 𝜏cond ⊕ ⊔𝜏i
where

𝜏cond ≜ if IsKnownOp(x, pati, ei)
then ⊥ else AdaptC 𝜏x

AdaptC ⟨cs ↦→ (_, _), _⟩ ≜ if SameVars(𝜏i)
then ⟨cs ↦→ (0,Cond), Exact⟩
else ⟨cs ↦→ (0,Cond), Inexact⟩

The additional contribution 𝜏cond accounts for whether
matching over the scrutinee 𝑥 induces non-trivial data flow
(in which case its contribution is determined via AdaptC), or
simply “peels off” a constructor of an option value (in which
case it has no contribution). The latter is a very common
special scenario, (see, e.g., lines 11–13 of Fig. 5), and without
this machinery the analysis would lose too much precision.

3.5 Calculating Sharding Signatures

From the set of transition summaries of a given contract
(one such summary is shown in Fig. 8), and provided with
user input as to what transitions to attempt to shard and
which fields can be treated weakly for reading (cf. Sec. 4.2.3),
CoSplit derives a sharding signature, consisting of a set of
constraints oc for each transition in the contract and a join

7

PLDI ’21, June 20–25, 2021, Virtual, Canada George Pîrlea, Amrit Kumar, and Ilya Sergey

Algorithm 3.1: Derive Sharding Signature
input :effect summaries, selected transitions, weak reads
output : transition (ownership) constraints, field join operations

Σ← effect summaries of selected transitions
wrs← reads the user accepted might be stale
for Σ ∈ Σ do

cfs← GetConstantFields(Σ)
Σ← ∀𝑓 ∈ cfs , Σ.remove(Read(𝑓))
Σ← Σ.MarkConstantsInTypes(cfs)

lcws← GetTransitionCommWrites(Σ)
cws, joins← TryConsolidateJoinsGlobally(lcws)
Σ← Σ.RemoveSpuriousReads(cws)
if joins ≠ ∅ ∧ wrs = StaleReads(Σ, joins) then

oc← {}
for Σ ∈ Σ do

c← GenEnvironmentConstraints(Σ)
foreach Read(f) ∈ Σ do c← c ∪ Owns(f)
foreach Write(f) ∈ (Σ \ cws) do c← c ∪ Owns(f)
oc← oc ∪ c

return (oc, joins)

operation ⊎f for each field. The top part of Fig. 9 enumerates
the constraints that summaries can impose, as well as join
operations we currently support. Constraints are static sym-
bolic representations of conditions that must be satisfied at
runtime. They refer to mutable fields or transition parame-
ters as symbolic values, e.g., Owns(f) and UserAddr(𝑥). For
instance, the Owns(balances[_sender]) constraint denotes
that a shard executing the transition must own the _sender
portion of the balances state component, where _sender is
replaced at runtime by the actual value given by the transac-
tion. The other constraints are imposed by the blockchain
environment, e.g., SenderShard, which must be satisfied if
the contract accepts funds, or arise as preconditions for the
soundness of our analysis, e.g., that keys used for map ac-
cesses do not alias. ⊥ corresponds to an unsatisfiable con-
straint, meaning that the transition cannot be executed in
parallel with other transactions over the same contract.

Algorithm 3.1 shows the procedure for deriving the shard-
ing signature. The contract developer selects a set of transi-
tions that should be executed in parallel, and the algorithm
inspects their summaries to determine what constraints must
be satisfied to enable parallel execution. First, it identifies
which (if any) contract fields are not written to in the se-
lected transitions, and marks their reads as non-effectul (i.e.,
it removes them from the summary) and their contributions
as constant. Second, looking at each summary in isolation,
it identifies using the types, which writes have a commuta-
tive effect, e.g.Write(balances[to]) in Fig. 8. Then, it deter-
mines if a join operation exists for every field, i.e., the writes
across transitions are compatible, and marks reads that only
flow into commutative writes, e.g. Read(balances[to]) (since
balances[to] does not appear in any other type), as non-
effectul.5 Finally, if the developer accepts that reads from

5The Condition effect prevents removal of reads that affect control-flow.

fields that are commutatively written to might return stale
data (cf. Sec. 4.2.3), the algorithm translates effects into con-
straints via the mapping in Fig. 9 and by requiring ownership
of every field that is read or non-commutatively written to.

4 Enabling Parallelism with CoSplit

In this section, we show how the signatures inferred by
CoSplit, as described in Sec. 3, can be used to allow for
parallel transaction execution in a sharded blockchain.

4.1 The Sharding Model

We integrated CoSplit with Zilliqa blockchain [72]. Zilliqa is
one of the first sharded chains in production. It implements
the Elastico protocol for secure sharding [47] and relies on an
optimised version of the Practical Byzantine Fault Tolerance
(PBFT) protocol for consensus in the network [13, 65]. At
the time of writing, Zilliqa mainnet has processed 9.6 million
transactions and contained 28 types of unique smart con-
tracts (some of them have many deployed copies). Below, we
outline the relevant parts of its architecture and transaction
processing logic, referring the reader to the corresponding
manuscripts for details (on, e.g., security and epoch-based
mining) [47, 72], which are not critical for our presentation.

Network architecture. The Zilliqa network consists of
three main components: the lookup nodes, the shards, and the
Directory Service committee (aka theDS committee) (cf. Fig. 10).
Lookup nodes are the entry-point to the network. Any

transaction created by a user has to be sent to the lookup
nodes, which thereupon group several transactions together
in a packet and dispatch them to one of the shards or the
DS committee for processing. Each shard (and similarly the
DS committee, which in fact is a special shard) stores the
full blockchain state and runs PBFT to reach consensus on
validated transactions. It then proposes aMicroBlock (MB)
that contains information on the transactions that it has
processed.MicroBlocks are then sent to the DS committee
together with StateDelta (SD) which encodes the changes
in the state of the accounts that were touched by the trans-
actions within aMicroBlock. Once all theMicroBlocks and
the corresponding StateDeltas reach the DS committee, the
latter combines them all in the form of a FinalBlock (FB)
and a FinalStateDelta (FSD). The FinalBlock and FinalBlock-
Delta are then sent back to each shard so that all the shards
have the same view of the full global state—Zilliqa shards
transaction execution, but not state storage.

The default sharding strategy. A client-issued trans-
action can be processed either by one of the shards or by
the DS committee (Fig. 10). Zilliqa employs a simple deter-
ministic transaction assignment strategy to shards to ensure
that double spends are detected within a shard without com-
plex cross-shard communication [41]. User-to-user payment
transactions are deterministically assigned to shards based
on the sender’s address. That is, all transactions from the

8

Practical Smart Contract Sharding with Ownership and Commutativity Analysis PLDI ’21, June 20–25, 2021, Virtual, Canada

Lookup Nodes

tx1 tx2
tx3 tx4 tx5 tx6
tx7 tx8 tx9

MB1

SD1
tx1, tx2, tx3

MB3

SD3
tx7, tx8, tx9

MB2

SD2
tx4, tx5, tx6

FB
MB1, MB2, MB3

FSD
MB4

SD4

MB1

SD1
MB2

SD2

MB3

SD3

FB
FSD

DS Committee

Shard1 Shard2 Shard3

tx10

MB4

SD4
tx10

Figure 10. Transaction processing in a sharded architecture.

same user get handled in the same shard, so any double spend
from a specific user can be detected within a single shard in
the same way it gets handled in a non-sharded architecture.
For smart contracts, Zilliqa implements a non-efficient

conservative strategy. Specifically, the network statically as-
signs both contracts and end users to shards. Transactions to
a contract invoked by users residing in the same shard as the
contract are handled within the shard, while transactions
to a contract invoked by users from an outside shard are
handled in the DS committee. To ensure that shards and the
DS do not end up manipulating the state of the same con-
tract concurrently, the protocol requires the DS committee
to process transactions assigned to it only after the shards
have finished processing their transactions.
Given this simple deterministic assignment, the paral-

lelism achieved for smart contract transaction processing is
quite limited. In fact, the more shards there are, the more
transactions will need to be processed by the DS committee.

4.2 Revising the Account-Based Blockchain Model

In order to employ the described shardingmodel for CoSplit-
enabled parallelism, we need to revise a few core aspects in
the design of Ethereum-style blockchains.

4.2.1 Relaxing the nonce mechanism. Ethereum’s ac-
count based model [64] (adopted by Zilliqa and similar sys-
tems) uses of the nonce mechanism for defining a total order
on all transactions emitted by a particular user [54]. Nonces
are calculated by counting the number of transactions sent
from a user address and are digitally signed, addressing the
following design aspects: (a) strict, gap-free, user-defined
ordering of transactions, and (b) prevention of replay attacks.
Thanks to the nonces, the user can send many transactions
with subsequent numbers, and they are going to be processed
in this exact order—the protocol will not process transaction
with a nonce 𝑛 + 1 before the one with nonce 𝑛.

Because of aspect (a), nonces pose a bottleneck to sharded
executions. While in plain Zilliqa all transactions from a sin-
gle user are guaranteed to be handled in the same shard, the

nonce mechanism prevents parallel executing of transactions
with the same origin in different shards, as the total order of
nonces cannot be communicated. We notice that in practice
no applications rely on a specific order of user transactions
before they are committed by the protocol.6 Therefore, it suf-
fices for transactions to be processed in an increasing nonce
order, without waiting for all “gaps” to be filled, treating
them similarly to ballots in Paxos [43]. This relaxation re-
quires a very small change in the protocol logic. With it, we
kept the aspect (b) of the nonce mechanism, while allowing
for parallel executions. For instance, this way we can execute
in parallel two disjoint sets of commuting transactions from
the same user with nonces {1, 3, 5} and {2, 4}, respectively.

4.2.2 Parallel gas accounting. Gas accounting is a mech-
anism to charge users for executing transactions [70]. Such
deductions must be treated sequentially to avoid overspend-
ing. We circumvent this bottleneck to parallelism by splitting
a user’s balance across shards (with a larger fraction given to
the shard handling money transfers from that user), so gas
costs can be charged without coordinating balance changes.

4.2.3 Weak reads. In the Transfer transition (Fig. 8), we
saw that the write into balances[to] has a commutative ef-
fect. As a result, the processing shard does not need to own
the field to execute the transition. However, allowing commu-
tative writes means that transitions executing in a different
shard might read stale values of balances[_sender]. In our
example, this is fine—the sender may have more tokens that
she thinks. Yet, in general, introducing commutative writes
weakens the semantics of reads and a static analysis cannot
determine whether this is “fine” for specific contracts. As a
rule of thumb, a read can safely be marked as weak if the
contract semantics is “monotone” in the corresponding value
with respect to some lattice (as in [42]), i.e., the behaviour of
the contract is not affected if a higher value is read and other
shards can increase the value, but not decrease it. Ideally,
the programming language itself would allow contract de-
velopers to mark certain reads as weak, but neither Scilla nor
Solidity, both designed with sequential semantics in mind,
currently have this feature. For now, we require that weak
reads be provided as input to Algorithm 3.1.

4.3 CoSplit in Action

Using CoSplit assumes two modes: offline and online. In
the former, the user who is about to deploy her contract to
the blockchain, provides hints to the tool in order to choose
the most suitable sharding signature (Fig. 11). In the latter,
CoSplit is run automatically by the miners as a part of the
validation pipeline for contracts proposed to be deployed.

6Furthermore, the UTxO blockchain model adopted by, e.g., Bitcoin [50]
promotes this kind of weak notion of consistency, in which the user cannot
predict the order in which her transactions are committed.

9

PLDI ’21, June 20–25, 2021, Virtual, Canada George Pîrlea, Amrit Kumar, and Ilya Sergey

CoSplit
Contract  
Analyser

Transition

summary

Sharding  
Query Solver

Sharding signature

(oc,]f)
<latexit sha1_base64="5lj8E5R7/RsIo8Mtisj1AZayxRI=">AAACIXicbVDLSsNAFJ3UV62vqEs3g0WoICURwS6LblxWsA9oQphMJ+3QSSbMTIQS8itu/BU3LhTpTvwZJ2kWtfXAwOGce5h7jx8zKpVlfRuVjc2t7Z3qbm1v/+DwyDw+6UmeCEy6mDMuBj6ShNGIdBVVjAxiQVDoM9L3p/e5338mQlIePalZTNwQjSMaUIyUljyz1XC49vN46oRITahKOc6yK7ikJzFLpLfwZZAGWZZdembdaloF4DqxS1IHJTqeOXdGHCchiRRmSMqhbcXKTZFQFDOS1ZxEkhjhKRqToaYRCol00+LCDF5oZQQDLvSLFCzU5USKQilnoa8niyVXvVz8zxsmKmi5KY3iRJEILz4KEgYVh3ldcEQFwYrNNEFYUL0rxBMkEFa61JouwV49eZ30rpu21bQfb+rtu7KOKjgD56ABbHAL2uABdEAXYPAC3sAH+DRejXfjy5gvRitGmTkFf2D8/ALFj6W+</latexit><latexit sha1_base64="5lj8E5R7/RsIo8Mtisj1AZayxRI=">AAACIXicbVDLSsNAFJ3UV62vqEs3g0WoICURwS6LblxWsA9oQphMJ+3QSSbMTIQS8itu/BU3LhTpTvwZJ2kWtfXAwOGce5h7jx8zKpVlfRuVjc2t7Z3qbm1v/+DwyDw+6UmeCEy6mDMuBj6ShNGIdBVVjAxiQVDoM9L3p/e5338mQlIePalZTNwQjSMaUIyUljyz1XC49vN46oRITahKOc6yK7ikJzFLpLfwZZAGWZZdembdaloF4DqxS1IHJTqeOXdGHCchiRRmSMqhbcXKTZFQFDOS1ZxEkhjhKRqToaYRCol00+LCDF5oZQQDLvSLFCzU5USKQilnoa8niyVXvVz8zxsmKmi5KY3iRJEILz4KEgYVh3ldcEQFwYrNNEFYUL0rxBMkEFa61JouwV49eZ30rpu21bQfb+rtu7KOKjgD56ABbHAL2uABdEAXYPAC3sAH+DRejXfjy5gvRitGmTkFf2D8/ALFj6W+</latexit><latexit sha1_base64="5lj8E5R7/RsIo8Mtisj1AZayxRI=">AAACIXicbVDLSsNAFJ3UV62vqEs3g0WoICURwS6LblxWsA9oQphMJ+3QSSbMTIQS8itu/BU3LhTpTvwZJ2kWtfXAwOGce5h7jx8zKpVlfRuVjc2t7Z3qbm1v/+DwyDw+6UmeCEy6mDMuBj6ShNGIdBVVjAxiQVDoM9L3p/e5338mQlIePalZTNwQjSMaUIyUljyz1XC49vN46oRITahKOc6yK7ikJzFLpLfwZZAGWZZdembdaloF4DqxS1IHJTqeOXdGHCchiRRmSMqhbcXKTZFQFDOS1ZxEkhjhKRqToaYRCol00+LCDF5oZQQDLvSLFCzU5USKQilnoa8niyVXvVz8zxsmKmi5KY3iRJEILz4KEgYVh3ldcEQFwYrNNEFYUL0rxBMkEFa61JouwV49eZ30rpu21bQfb+rtu7KOKjgD56ABbHAL2uABdEAXYPAC3sAH+DRejXfjy5gvRitGmTkFf2D8/ALFj6W+</latexit>

Transitions to be sharded,

Fields for weak reads {f1, f2, …}

{T1, T1, . . .}Contract C

Figure 11. CoSplit for a contract developer (offline mode).

Offline mode. Prior to the deployment of her contract
𝐶 (written in Scilla), the developer runs the CoSplit anal-
ysis on 𝐶’s code, producing a transition summary. Such a
summary (cf. Sec. 3.2) itself is not yet useful for sharding.
The developer next sends a query (a (sub)set {T1,T2, . . .} of
𝐶’s transitions and a subset {f1, f2, . . .} of 𝐶’s fields that can
be treated weakly for reading) to the sharding solver, ob-
taining as a result a sharding signature: a set of ownership
constraints oc and a dictionary of per-field join functions
⊎f suitable for sharding those transitions. CoSplit returns
a pair (oc,⊎f) of encodings, which the developer submits
along with 𝐶’s code in a contract-deploying transaction.

Validating sharding signatures. Each node in the shard,
upon receiving a transaction with a contract 𝐶 and its sig-
nature (oc,⊎f), runs CoSplit ensuring that the signature is
valid (the set of sharding transitions can be obtained from the
constraints oc). The signature is then broadcast, along with
the contract code and metadata, to all nodes in the system.
The signatures of different contracts are independent, so

the deployment of a new contract does not affect the validity
of previously computed sharding signatures.

Assigning transactions to shards.A lookup node, upon
receiving a transaction tx = ⟨𝐶,T , 𝑥⟩ invoking a transition
T of a contract 𝐶 with inputs 𝑥 , first conservatively checks
whether the transaction is indeed single-contract (i.e., no
more than one transition is invoked). If it cannot validate it
as such, the transaction is routed to the DS committee. Other-
wise, the lookup node exercises the sharding strategy induced
by 𝐶’s signature (oc,⊎f), if such signature is available.
To do so, the lookup node invokes the dispatchoc (T , 𝑥)

procedure, which identifies a shard S that satisfies T ’s con-
straints, and routes tx to that shard. If no satisfying shard
exists, the transaction is routed to the DS committee.

Executing sharded transactions. Transactions are ap-
plied to a contract in epochs, so all nodes in all shards share
the same contract state at each epoch’s beginning and end.
Upon receiving a transaction that invokes a transition T of
𝐶 with inputs 𝑥 , a node in a shard S executes it by applying
the transition’s logic FT,𝑥 to the contract state 𝜎 at hand.

To understand why this is correct and leads to determinis-
tic parallelism, let us think of a “logical split” of the state 𝜎
using the per-field join operations⊎ = ⊎f from the contract’s
sharding signature. Here, we consider the contract state 𝜎
as a join of the two states 𝜎Sself, and 𝜎

S
other [46], where 𝜎

S
self is

owned by the node’s shard S, while 𝜎Sother is not owned, and,
hence will not be affected by executing FT,𝑥 . Therefore, by
running the contract’s transition, i.e., executing FT,𝑥 (𝜎), the
node obtains the state 𝜎 ′S = 𝜎 ′Sself ⊎ 𝜎Sother, where only the
owned part has been changed from 𝜎Sself to 𝜎

′S
self. Due to the

locality of FT,𝑥 with respect to the state owned by the node’s
shard (which is ensured by dispatching the transaction via
the ownership constraints), all changes done by the nodes of
the shard S to the state of the contract can be accumulated
into the shard-specific state delta 𝜎SΔ , which only includes af-
fected parts of the contract’s state that are “logically disjoint”
from any changes other shards have made concurrently.
The final state delta 𝜎SΔ is sent to the DS committee that

combines the initial contract state 𝜎 with all the state deltas
by executing a three-way merge [37, 45] using the per-field
operations ⊎f from the signature. This deterministic merge
always succeeds, thanks to logical disjointness of the state
deltas from different shards. Finally, the DS committee exe-
cutes all the remaining potentially conflicting transactions,
obtaining the final contract state, which is broadcast system-
wide to all other shards at the end of the epoch.

5 Evaluation

We implemented CoSplit in OCaml as a pluggable checker,
adding an optional phase to the existing Scilla type checking
pipeline [20]. Put together, the analysis, query solver, trans-
action dispatcher, and state delta merger measure 2900 lines
of OCaml code. All interaction between CoSplit and the
nodes of Zilliqa network happens via JSON-RPC; that is, the
approach can be reused by any other system that provides a
way to serialise/deserialise the state of Scilla contracts.

In our evaluation of CoSplit, we focus on two aspects
of the tool: the quality of the analysis for sharding signa-
tures (Sec. 5.1) and the impact of using the signatures to the
system throughput when executing transactions to popular
contracts (Sec. 5.2) from the Zilliqa blockchain.7

5.1 Evaluating the Analysis

We are interested in quantitative answers to the following
questions with regards to the CoSplit analysis:
• Is the analysis fast enough to be used for validating contract-
deploying transactions (Sec. 5.1.1)?
• Is the analysis capable of inferring non-trivial sharding
signatures for real-world contracts (Sec. 5.1.2)?

To answer these questions, we have run the analysis on all
49 unique contracts from Zilliqa mainnet and testnet.

5.1.1 Analysis performance. All Scilla contracts, upon
deployment to the blockchain, are validated by the min-
ers that are forced to parse their code and run the type-
checker. We ran the contract deployment pipeline (parsing,

7The artefact, including CoSplit, its integration with Zilliqa, and the bench-
mark suite used for evaluation, is archived and made available [56].

10

Practical Smart Contract Sharding with Ownership and Commutativity Analysis PLDI ’21, June 20–25, 2021, Virtual, Canada

commute with other writes to the same field. Consider
what would happen if instead of adding amount to bal
in line 11 of Fig. 7, we would have added bal again (or
another value that depended on bal). If a different tran-
sition modified the same field by adding a constant to it,
the two effects would not commute, despite the fact that
all the involved operations are commutative. The linear-
ity (“used-once”) information attached to contribution
sources lets us detect ensure that the operations are used
in ways that guarantee commutative effects.5

Commutativity and weak reads. Going back to our ex-
ample, we can tell that the write into balances[to] has a
commutative effect. As a result, the processing shard does
not need to satisfy the Owns(balances[to]) constraint to
execute this transition. But something easy to miss hap-
pens at this point: my balances[_sender] can be some
other shard’s balances[to]. Allowing other shards to per-
form commutative writes means that my reads can return
stale data. In this ERC20 Transfer example, this is fine:
one may in fact have more money than one thinks they
do. In general, however, adding support for commuta-
tive writes weakens the semantics of reads and there is
no way for a static analysis to determine whether this
semantics is “fine” for particular contracts. For this, we
need user input. Ideally, the programming language it-
self would allow one to mark certain reads as weak, but
neither Scilla nor Solidity, both designed with sequential
semantics in mind, currently have this feature. In this
work, we require the contract writer to provide (during
the contract deployment) annotations for weak reads if
she wants her contract to use commutative operations.
Inferring sharding signatures. Continuing our exam-
ple, for a shard to processes the Transfer transition, it
must Own(balances[_sender]), and the transaction must
have inputs such that _sender and to are UserAddr. That
gives us the constraints. What about the joins? Recall
that the field-specific joins]f reflect the virtual split of
the state. In our case, the split is between shards that own
a given balance fully, and thus have]balances[_sender] =
OwnOverwrite, and shards that only write commutatively
to it, and thus have]balances[to] = IntMerge. Put together,
these give us our sharding signature for the example. To
obtain signatures for entire contracts, we extend the same
reasoning to apply to all the user-selected transitions at
once, as it were a union of all involved transitions. The
inferred constraints apply to individual transitions, but
are generated with global knowledge. Readers interested
in the details may refer to Appendix A.
Dispatching transactions. Finally, to dispatch a trans-
action, the lookup inspects the transition inputs and the
sharding signature of the called contract and identifies
which shard, if any, satisfies the constraints. Similarly,

5As an example, the linear function f (x) = x + 1 commutes with
g(x) = x+2 , but does not with h(x) = 2⇤x+1, as f (h(a)) 6= h(f (a)).

0 2,000 4,000 6,000
Blackjack

XSGD
CelebrityNFT

DBond
Map_cornercases

Oracle
UD_registry

Superplayer_token
DPSToken

Hub
OTS200

Hybrid_Euro
Zeecash

HTLC
Multisig

OceanRumble_minion_token
AuctionRegistrar

SwapContract
DinoMightyLand

MRToken
ProxyContract

MyRewardsToken
OceanRumble_crate

SimpleBondingCurve
ProofIPFS
ZKToken
SocialPay

LUY_Cambodia
FungibleToken

RoadDamage
IOU

HydraXSettlement
PayRespect

Bookstore
UD_operator_contract

UD_resolver
UD_primitive_version

UD_escrow
LikeMaster

BoltAnalytics
Voting

LoveZilliqa
Quizbot

BunkeringLog
Soundario

HelloWorld
Schnorr

FirstContract
GoFundMi
TestSender
Cryptoman

Parsing
Typechecking

Sharding analysis

Fig. 8: Parsing, type checking, and analysis times (µs).

the delta merger determines which shard the state delta
comes from and identifies which join operation to use.

6 Evaluation
In our evaluation of COSPLIT, we focus on two aspects
of the tool: the quality of the analysis for sharding signa-
tures (Sec. 6.1) and the impact of using the signatures to
the system throughput when executing transactions with
popular contracts (Sec. 6.2) from Zilliqa blockchain.

6.1 Evaluating the Analysis
We are interested in getting quantitative answers to the
following questions wrt. the COSPLIT analysis:
• Is the analysis fast enough to be used for validating

contract-deploying transactions (Sec. 6.1.1)?
• Is the analysis capable of inferring non-trivial sharding

signatures for real-world contracts (Sec. 6.1.2)?
To answer these questions, we have run the analysis on
all 49 unique contracts from Zilliqa mainnet and testnet.

6.1.1 Analysis performance
All Scilla contracts, upon deployment to the blockchain,
are validated by the miners that are forced to parse their
code, and run the type-checker. We ran the contract de-
ployment pipeline (parsing, type-checking, and sharding
analysis) for the contracts in our sample and measured
how much time is spent in each deployment stage. Fig. 8
shows the performance breakdown of those three com-
ponents. The numbers were obtained on a PC with an
Intel Core i7-8665U CPU by executing the pipeline for
each contract a thousand times and averaging the result-
ing time for each stage. The analysis adds a significant
but acceptable overhead of around 46% to the total con-
tract deployment time. Since contract deployments form
a very small fraction of all transactions and happen only

9

Figure 12. Parsing, type checking, and analysis times (µs).

type-checking, and sharding analysis) for the contracts in
our sample and measured how much time is spent in each
deployment stage. Fig. 12 shows the performance breakdown
of those three components. The numbers were obtained on
a PC with an Intel Core i7-8665U CPU by executing the
pipeline for each contract a thousand times and averaging
the resulting time for each stage. The analysis adds a sig-
nificant but acceptable overhead of around 46% to the total
contract deployment time. Since contract deployments form
a very small fraction of all transactions and happen only
once during the lifetime of a contract, the analysis can be
run by the miners without affecting overall throughput.

1 2 3 4 5 6 7 8 9 10 11 12 15 17 18
0
1
2
3
4
5
6

5.1.2 Analysis efficacy.

The bar chart on the right
summarises the number of
transitions (from 1 to 18) for our 49 contracts. While it may
be more likely that a contract with a large number of tran-
sitions can be sharded efficiently, having many transitions
might also indicate having complex logic, making it difficult
to infer a useful signature. To quantify the efficacy of the
analysis, we introduce some new terminology.

Definition 5.1 (Hogged fields). A contract’s transition T
hogs a field f in a sharding signature sg iff sg’s ownership
constraints require a shard to fully own f to execute T .

Definition 5.2. A sharding signature sg is good enough (GE)
for its selection of 𝑘 contract transitions, iff either
• 𝑘 = 1 and the selected transition does not hog fields, or
• 𝑘 > 1 and any field is hogged by at most one transition.

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●●

●● ●

●

● ●

● ●● ● ●0
2
4
6
8

10
12

Number of transitions in a contract
1 3 5 7 9 11 13 15 17

● Size of the largest good enough signature

(a) Largest good enough signatures

0
2
4
6
8

10
12

Number of transitions in a contract

st
at

s$
M

ax
G

EN
um

1 3 5 7 9 11 13 15 17

Number of maximal good enough signatures

(b)Maximal GE signatures

Figure 13. Statistics for Good Enough signatures.

Intuitively, a sharding signature is good enough if it allows
for the existence of a contract state, in which some 𝑘 of the
transitions can be run in parallel by different shards. Fig. 13a
shows the sizes of the largest good enough signatures for
our contract selection. It is worth noting that a larger GE
signature (in terms of a number 𝑘) might perform worse un-
der real-world load than one with a smaller 𝑘 , which shards
different but more frequently used transitions. The following
definition outlines the signatures worth comparing.

Definition 5.3 (Maximal GE signature). A GE sharding sig-
nature ismaximal if its selection of transitions is not a proper
subset of some other GE signature’s selection.

A contract might have a number of maximal signatures
of various sizes. The plot in Fig. 13b depicts those numbers
for our contracts. Computing the maximal signatures at the
mining time is impractical, as it requires making

∑𝑛
𝑘=1

(
𝑛
𝑘

)
queries to the sharding solver (Fig. 11). Luckily, this compu-
tation can be done offline by a contract implementer, who
decides prior to the deployment which of the signatures to
propose. The miners need to validate only that one signature.
These findings suggest that CoSplit indeed uncovers

many opportunities for parallel execution of smart contracts.

5.2 Evaluating Sharded Executions

We evaluate the integration of CoSplit with Zilliqa by mea-
suring the impact on throughput for five representative Scilla
contracts. The chosen contracts are: (1) the most popular
contracts on Zilliqa (e.g., UD), (2) equivalent to their popular
counterparts on Ethereum currently (e.g., FungibleToken and
NonfungibleToken) and in the past (e.g., Crowdfunding).

Contract LOC #Trans Larg.GES #Max.GES

FungibleToken 439 10 6 2
Crowdfunding 186 3 2 1
NonfungibleToken 288 5 3 2
ProofIPFS 289 10 8 2
UD Registry 500 11 6 2

The table above summarises contract sizes, number of tran-
sitions, largest GE strategy, and the number of maximal GE
signatures. We set out to answer two main questions:
• What throughput improvement, in terms of transactions
per second, can CoSplit help to achieve (Sec. 5.2.1)?
• What is the impact of the overheads imposed by CoSplit-
enabled sharding (Sec. 5.2.2)?

11

PLDI ’21, June 20–25, 2021, Virtual, Canada George Pîrlea, Amrit Kumar, and Ilya Sergey

Experimental setup. To obtain the throughput figures,
we deployed small-scale testnets in various configurations on
Amazon EC2 containers. Each node runs on a t2.mediumma-
chine with 2 logical CPUs and 4GB of RAM, running Ubuntu
16.04. These specifications reflect theminimum requirements
needed to run a Zilliqa node. For our benchmarks, we fix the
shard size to be 5 nodes per shard and measure the effect on
throughput of increasing the number of shards. We use the
same shard and DS gas limits as the Zilliqa mainnet.

Selection of sharding signatures. Wedeploy each of the
five contracts in two configurations, one with no sharding
information (baseline), and one with a “reasonable” sharding
signature, informed by expected usage of the contract. For
our experiments, we make the choices as follows:

• For FungibleToken (FT, Zilliqa’s ERC20), we shard the Mint,
Transfer and TransferFrom, but not IncreaseAllowance,
Burn, or other administrative transitions.
• For NonfungibleToken (NFT, Zilliqa’s ERC-721 [62]), we
shard Mint and Transfer (which includes transfer-from
functionality), but not Burn and Approve.
• For ProofIPFS, we shard the transition that notarises a
hash, but not the one that removes it from the contract.
• For the Unstoppable Domains (UD) registry, we shard
granting a new domain name and updating the record
associated with a name, but not transfers of ownership.

For the Crowdfunding contract, there is only one possible
choice, which is to shard the Donate and Claimback (if the
goal was not reached) transitions. We argue that our choices
reflect what a reasonable contract deployer would select and,
as such, the measured throughput reflects probable scenarios.

We remark that we had to slightly rewrite the NFT and UD
contracts, compared to their mainnet definitions, to make
them shardable. These rewrites did not affect the semantics
of the contracts. We discuss the details of the changes, as well
as the potential to automate such modifications, in Sec. 6.

5.2.1 Measuring throughput. After deployment, we sub-
ject the contracts, in sequence, to different workloads sus-
tained over 10 epochs (roughly 8.5 minutes) and measure
the resulting throughput. As Fig. 14 shows, for most of the
workloads in the benchmark, we obtain a roughly linear TPS
increase as the number of shards goes up. The two exceptions
are the “FT fund” and the “ProofIPFS register” workloads.
The former transfers fungible tokens from a single source
to multiple destinations (all transactions go to the source’s
shard). The latter notarises a hash, but also keeps a list of
notarised items for each user, and thus accesses two sepa-
rate fields, which typically will be owned by different shards,
hence many transactions need to be processed by the DS
Committee. We note that for workloads that do not shard
well, performance does not degrade as compared to the base-
line, and in some cases (e.g. ProofIPFS) marginally improves.

FT fund FT
transfer

CF
donate

NFT
mint

NFT
transfer

ProofIPFS
register

UD
bestow

UD
config

0

100

200

300

400

Baseline 3 shards CoSplit 3 shards CoSplit 4 shards CoSplit 5 shards

Figure 14. Average TPS for different contract transitions as
a function of number of shards, over 10 epochs.

The “FT transfer” workload sends tokens from random
sources to random destinations. In the baseline configura-
tion, the throughput is the same as for the single-source
workload. The CoSplit-empowered sharding strategy, on
the other hand, fully utilises the shards’ processing capac-
ity and we get an almost linear increase in throughput as
the number of shards increases. A similar effect arises for
crowdfund donations. Interestingly, the “NFT mint” work-
load (which creates new tokens) is also single-source, just
like “FT fund”. However, the relevant transition does not af-
fect state depending on the identity of the transaction sender,
but only on the identifier of the created token. As such, we
can obtain linear scaling even for a single-source workload.
This is only possible because of the changes to the account-
based model that we detailed in Sec. 4.2. Finally, Unstoppable
Domains is the most popular smart contract on the Zilliqa
mainnet, accounting for over half of the smart contract exe-
cutions. We manage to shard the most popular transitions
on this contract, which account for 90% of usage, and show
linear increases in throughput for them as well.
5.2.2 Introduced overheads. Integrating CoSplit adds
overheads to transaction dispatch and state delta merging.
Concretely, we see transaction dispatch time increase from
an average 8 µs to an average 475 µs, and the state delta
merging increasing from 0.8 µs to 48.65 µs per changed state
field. This amounts to a 60x slowdown of these operations,
most of it as a result of serialisation and deserialisation costs,
but this is fully justified by the resulting increase in over-
all system throughput. The overall performance gain comes
from the fact that applying a delta is much faster than exe-
cuting all the transactions that resulted in it. For instance,
for FungibleToken, the effects of 50 seconds of transaction
execution time can be merged in roughly 0.5 seconds.
5.2.3 Ownership versus commutativity. In terms of the
contribution of the two sharding strategies to the through-
put improvement, we observe that contracts that manipulate
non-fungible quantities (e.g., NFTs, domains, notary) benefit
from the disjoint state ownership analysis and contracts that
manipulate fungible quantities (e.g., FT) benefit from the
commutativity analysis. Contracts that have a mixture of
non-fungible and fungible quantities, e.g., a voting contract

12

Practical Smart Contract Sharding with Ownership and Commutativity Analysis PLDI ’21, June 20–25, 2021, Virtual, Canada

that keeps track of who voted and of the total number of
votes, can benefit from both strategies.

6 Discussion and Future Work

Handling integer overflows. CoSplit’s signature infer-
ence does not take possible integer overflows into account.
Overflows (and underflows) may cause a problem in the case
when IntMerge is used to join state deltas from different
shards that individually do not cause an overflow, but do so
when joined. At the moment, our implementation ignores
this issue. A working solution would be to modify the Scilla
interpreter, providing it with information about the num-
ber 𝑁 of shards. Specifically, it should perform additional
post-hoc validation of a transaction, which will fail if the
difference between the initial (per epoch) value 𝑣 of any
affected integer-valued component and its value after the
transaction is executed exceeds ⌊ MAX_INT−𝑣

𝑁
⌋. The information

about such components is already available in the sharding
signatures. Furthermore, a user might be given an option to
pay a higher gas fee, in order to reduce a risk for her trans-
action to be rejected due to this conservative check. Such
transactions will be routed directly to the DS committee, and,
thus, processed sequentially.

Automated contract repair. As mentioned in Sec. 3.3,
the analysis can describe map accesses only if the keys used
to index into the map are transition parameters. During the
evaluation, we discovered a small number of contracts that
CoSplit cannot shard due to this limitation, but which can
be made shardable by a simple refactoring. For instance, an
NFT contract’s Transfer transition ensures that the transac-
tion’s sender is authorized by the token owner to initiate the
transfer by checking for inclusion in approvals[tokenOwner],
where tokenOwner is read from the contract’s state. This can-
not be sharded. However, if we make tokenOwner a parameter
and rewrite the transition to check that the supplied value
matches the value in the contract’s state before attempting
the transfer (akin to compare-and-swap), the transition be-
comes shardable. In future work, we plan to address this
using program repair techniques, suggesting the shardable
contract version to the developer before deployment.

CoSplit and other blockchains. As demonstrated in
Sec. 3, the core analysis of CoSplit does not rely on any spe-
cific features of Scilla but is easy to implement for it due to
the language’s minimalism and restrictions (e.g., very limited
set of side effects). Should other account-based blockchains,
e.g., Tezos [30] and Ethereum [70], provide a sharded archi-
tecture in the future, we believe a similar analysis could be
implemented for them as well. The key challenge of devel-
oping CoSplit for Michelson, the language of Tezos [67], is
in reasoning about its stack-based executions, tracking the
provenance and cardinality of pushed and popped values.
Ethereum’s EVM could be supported through decompilation
into a high-level language [31]. The approachwill most likely
have to be restricted to contracts with no external calls.

7 Related Work

Sharding contracts in blockchains. Several industry
proposals outline approaches for smart contract sharding,
yet none of them provide an efficient solution for sharding
same-contract transactions. For example, the Elrond pro-
tocol moves a smart contract to the same shard where its
static dependencies lie [25], which takes at least 5 rounds
of consensus for a transaction to be finalised. Harmony [32]
allows one to deploy contracts in individual shards, with no
cross-shard communication allowed. Ethereum 2.0 proposes
a cross-shard yanking scheme where the contract code and
data is moved into a shard at runtime [69]. The shard then
locks the contract to block any parallel execution of other
transactions affecting it. At the time of writing, none of these
solutions appear to be fully implemented.

The Chainspace protocol allows for sharded execution of
smart contracts (as well as state sharding) by representing
state evolution as a directed acyclic graph [1], similar to Bit-
coin’s UTxO transactionmodel [64]. In Chainspace, contracts
have to be written in a specific fashion, so their execution
happens off the chain. For an unspecified kind of transac-
tion, the authors of Chainspace report linearly increasing
throughput of approximately 75 TPS per each two shards
of four nodes in each [1, Fig. 6]. Importantly, Chainspace
does not address the scalability problem with same-contract
transactions (which we do): under high contention for the
same contract the rate of aborted transactions rises. This is
because its protocol,S-BAC (a combination of PBFT [13] and
Two-Phase Commit for inter-shard communication), imple-
ments a variant of optimistic concurrency control, whereas
CoSplit allows for pessimistic (race-free) concurrency.

Smart contracts and concurrency. Dickerson et al. [19]
describe a commutativity-based approach where miners exe-
cute smart contracts in parallel locally , using software trans-
actional memory techniques [33, 34]. Unlike our approach
that detects possible transaction conflicts pessimistically by
means of a static analysis prior to contract deployment, the
work by Dickerson et al. exercises the optimistic approach,
where conflicts are identified on-the-fly by the miners, with
the corresponding executions aborted. It is not clear how
to apply these ideas from optimistic concurrency for effi-
cient sharding of general smart contracts in a Byzantine
setting, where an adversary can craft cheap (in terms of gas
costs) conflict-producing transactions that force the shards
to re-execute expensive transactions from the same batch.
A more fine-grained identification of conflicts would most
probably require an analysis similar to ours, as conjectured
in [59]. At the same time, our solution is complementary to
Dickerson et al.’s work and other similar approaches. For
instance, one can add single-node parallelism on top of CoS-
plit-enabled sharding, and the analysis can help identify
which transactions are guaranteed not to require rollback
and re-execution, even within a single shard.

13

PLDI ’21, June 20–25, 2021, Virtual, Canada George Pîrlea, Amrit Kumar, and Ilya Sergey

Recent work by Bartoletti et al. makes an observation
similar to ours that commutativity (which they dub swap-
pability) of transactions manipulating Ethereum contracts
enables their parallel execution [6]. Their syntactic criterion
for inferring swappability is, however, more coarse-grained
than our analysis, and is based on determining disjointness of
transaction footprints, without taking into account commuta-
tivity of operations such as addition. As such, their approach
would not allow to shard individual non-conflicting updates
in an ERC20 contract as we do. Bartoletti et al.’s approach
has not been implemented in practice.

Inferring commutativity. Reasoning about commuta-
tivity between program parts is an important problem with
applications including parallelising compilers [40, 58], spec-
ulative execution [33], and race detection [21]. Most of ex-
isting techniques for inferring commutativity are based on
analysing dynamic executions [2, 21, 28, 68] or by solving
SMT constraints [5] and, thus, cannot be used efficiently as a
part of transaction validation. Our analysis is close in spirit
to the work (in [58]) on static analysis to determine operation
commutativity for compile-time parallelisation. Our analysis
uses simpler abstractions, allowing it to be implemented in
a compositional fashion and have linear execution cost.

8 Conclusion

We presented a new approach to shard the execution of smart
contracts in an account-based blockchain model, based on
inferring ownership constraints and commutativity for state-
manipulating contract operations. In our approach, smart
contracts are first processed by a static analysis tool that
produces their sharding signatures, which are then used
for shard allocation that maximises parallelism. We have
demonstrated that our approach, when integrated into the
sharded production-scale blockchain, allows for linear scal-
ing of the transaction throughput for a selection of common
smart contracts that were considered unavoidable execution
bottlenecks in existing blockchain systems.

Acknowledgments

We thank the OSDI’20 and PLDI’21 PC and AEC reviewers,
and our shepherd, Gustavo Petri, for their valuable feedback
on earlier drafts of this paper and the artefact. We thank
Aquinas Hobor, Yaoqi Jia, and Prateek Saxena who partici-
pated in the discussions on smart contract sharding at earlier
stages of this work. We are grateful to Haichuan Liu, An-
tonio Nicolas Nunez, and Jun Hao Tan, for their help in
integrating CoSplit with the Zilliqa protocol, and to Bryan
Tan for conducting preliminary experiments. We benefited a
lot from discussions and feedback on preliminary versions
of this work by Andreea Costea, Kiran Gopinathan, Jacob
Johannsen, Vaivaswatha Nagaraj, and Anton Trunov. Ilya
Sergey’s work has been supported by the grant of Singapore
NRF National Satellite of Excellence in Trustworthy Software
Systems (NSoE-TSS) and by the NUS Crystal Centre.

References

[1] Mustafa Al-Bassam, Alberto Sonnino, Shehar Bano, Dave Hrycyszyn,
and George Danezis. 2018. Chainspace: A Sharded Smart Contracts
Platform. In NDSS. The Internet Society.

[2] Farhana Aleen and Nathan Clark. 2009. Commutativity analysis for
software parallelization: letting program transformations see the big
picture. In ASPLOS. ACM, 241–252.

[3] Hagit Attiya, Rachid Guerraoui, Danny Hendler, Petr Kuznetsov,
Maged M. Michael, and Martin T. Vechev. 2011. Laws of order: expen-
sive synchronization in concurrent algorithms cannot be eliminated.
In POPL. ACM, 487–498.

[4] Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam, Sarah Azouvi,
Patrick McCorry, Sarah Meiklejohn, and George Danezis. 2019. SoK:
Consensus in the Age of Blockchains. In 1st ACM Conference on Ad-
vances in Financial Technologies, (AFT). ACM, 183–198.

[5] Kshitij Bansal, Eric Koskinen, and Omer Tripp. 2018. Automatic Gen-
eration of Precise and Useful Commutativity Conditions. In TACAS
(LNCS, Vol. 10805). Springer, 115–132.

[6] Massimo Bartoletti, Letterio Galletta, and Maurizio Murgia. 2020. A
True Concurrent Model of Smart Contracts Executions. In COORDI-
NATION (LNCS, Vol. 12134). Springer, 243–260.

[7] Bitcoin Wiki. 2019. Scalability. https://en.bitcoin.it/wiki/Scalability,
accessed on May 12, 2020.

[8] Sebastian Burckhardt, Alexandro Baldassin, and Daan Leijen. 2010.
Concurrent programming with revisions and isolation types. In OOP-
SLA. ACM, 691–707.

[9] Sebastian Burckhardt and Daan Leijen. 2011. Semantics of Concurrent
Revisions. In ESOP (LNCS, Vol. 6602). Springer, 116–135.

[10] Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok
Yang. 2011. Compositional Shape Analysis by Means of Bi-Abduction.
J. ACM 58, 6 (2011), 26:1–26:66.

[11] Cristiano Calcagno, PeterW. O’Hearn, andHongseok Yang. 2007. Local
Action and Abstract Separation Logic. In LICS. IEEE, 366–378.

[12] Lásaro J. Camargos, Rodrigo Schmidt, and Fernando Pedone. 2007.
Multicoordinated Paxos. In PODC. ACM, 316–317.

[13] Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault
Tolerance. In OSDI. USENIX Association, 173–186.

[14] Austin T. Clements, M. Frans Kaashoek, Nickolai Zeldovich,
Robert Tappan Morris, and Eddie Kohler. 2013. The scalable com-
mutativity rule: designing scalable software for multicore processors.
In SOSP. ACM, 1–17.

[15] ConsenSys. 2018. The Inside Story of the CryptoKitties Conges-
tion Crisis. https://media.consensys.net/the-inside-story-of-the-
cryptokitties-congestion-crisis-499b35d119cc.

[16] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A
Unified Lattice Model for Static Analysis of Programs by Construction
or Approximation of Fixpoints. In POPL. ACM, 238–252.

[17] Patrick Cousot and Radhia Cousot. 1979. Systematic Design of Program
Analysis Frameworks. In POPL. ACM Press, 269–282.

[18] Hung Dang, Tien Tuan Anh Dinh, Dumitrel Loghin, Ee-Chien Chang,
Qian Lin, and Beng Chin Ooi. 2019. Towards Scaling Blockchain
Systems via Sharding. In SIGMOD Conference. ACM, 123–140.

[19] Thomas D. Dickerson, Paul Gazzillo, Maurice Herlihy, and Eric Koski-
nen. 2017. Adding Concurrency to Smart Contracts. In PODC. ACM,
303–312.

[20] Werner Dietl, Stephanie Dietzel, Michael D. Ernst, Kivanç Muslu, and
Todd W. Schiller. 2011. Building and using pluggable type-checkers.
In ICSE. ACM, 681–690.

[21] Dimitar Dimitrov, Veselin Raychev, Martin T. Vechev, and Eric Koski-
nen. 2014. Commutativity race detection. In PLDI. ACM, 305–315.

[22] Thomas Dinsdale-Young, Lars Birkedal, Philippa Gardner, Matthew J.
Parkinson, and Hongseok Yang. 2013. Views: compositional reasoning
for concurrent programs. In POPL. ACM, 287–300.

14

https://en.bitcoin.it/wiki/Scalability
https://media.consensys.net/the-inside-story-of-the-cryptokitties-congestion-crisis-499b35d119cc
https://media.consensys.net/the-inside-story-of-the-cryptokitties-congestion-crisis-499b35d119cc

Practical Smart Contract Sharding with Ownership and Commutativity Analysis PLDI ’21, June 20–25, 2021, Virtual, Canada

[23] Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W.
O’Hearn. 2019. Scaling static analyses at Facebook. Commun. ACM
62, 8 (2019), 62–70.

[24] Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. 2009. A calculus of
atomic actions. In POPL. ACM, 2–15.

[25] The Elrond Team. 2019. Elrond: A Highly Scalable Public Blockchain
via Adaptive State Sharding and Secure Proof of Stake. https://elrond.
com/assets/files/elrond-whitepaper.pdf.

[26] Ethereum Foundation. 2018. ERC20 Token Standard. https://en.
bitcoinwiki.org/wiki/ERC20 Online; accessed 4 March 2020.

[27] Ethereum Foundation. 2018. Solidity Documentation.
http://solidity.readthedocs.io.

[28] Timon Gehr, Dimitar Dimitrov, and Martin T. Vechev. 2015. Learning
Commutativity Specifications. In CAV (LNCS, Vol. 9206). Springer.

[29] Jean-Yves Girard. 1972. Interprétation fonctionnelle et élimination des
coupures de l’arithmétique d’ordre supérieur. Thèse d’État. Université
de Paris VII, Paris, France.

[30] L.M. Goodman. 2014. Tezos—a Self-Amending Crypto-Ledger.
[31] Neville Grech, Lexi Brent, Bernhard Scholz, and Yannis Smaragdakis.

2019. Gigahorse: thorough, declarative decompilation of smart con-
tracts. In ICSE. IEEE / ACM, 1176–1186.

[32] Harmony Team. 2018. Harmony: Technical Whitepaper.
https://harmony.one/pdf/whitepaper.pdf.

[33] Maurice Herlihy and Eric Koskinen. 2008. Transactional boosting: a
methodology for highly-concurrent transactional objects. In PPoPP.
ACM, 207–216.

[34] Maurice Herlihy, Victor Luchangco, MarkMoir, andWilliamN. Scherer
III. 2003. Software transactional memory for dynamic-sized data struc-
tures. In PODC. ACM, 92–101.

[35] Sungjae Hwang and Sukyoung Ryu. 2020. Gap between Theory and
Practice: An Empirical Study of Security Patches in Solidity. In ICSE.
ACM, 542–553.

[36] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron
Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris: Monoids and
Invariants as an Orthogonal Basis for Concurrent Reasoning. In POPL.
ACM, 637–650.

[37] Gowtham Kaki, Swarn Priya, K. C. Sivaramakrishnan, and Suresh Ja-
gannathan. 2019. Mergeable replicated data types. Proc. ACM Program.
Lang. 3, OOPSLA (2019), 154:1–154:29.

[38] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas
Gailly, Ewa Syta, and Bryan Ford. 2018. OmniLedger: A Secure, Scale-
Out, Decentralized Ledger via Sharding. In IEEE Symposium on Security
and Privacy. IEEE Computer Society, 583–598.

[39] Tim Kraska, Gene Pang, Michael J. Franklin, Samuel Madden, and Alan
Fekete. 2013. MDCC: multi-data center consistency. In EuroSys. ACM,
113–126.

[40] Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Rama-
narayanan, Kavita Bala, and L. Paul Chew. 2007. Optimistic parallelism
requires abstractions. In PLDI. ACM, 211–222.

[41] Amrit Kumar. 2018. Provisioning Sharding for Smart Contracts: A
Design for Zilliqa. https://blog.zilliqa.com/provisioning-sharding-for-
smart-contracts-a-design-for-zilliqa-cd8d012ee735.

[42] Lindsey Kuper, Aaron Turon, Neelakantan R. Krishnaswami, and
Ryan R. Newton. 2014. Freeze after writing: quasi-deterministic paral-
lel programming with LVars. In POPL. ACM, 257–270.

[43] Leslie Lamport. 1998. The Part-Time Parliament. ACM Trans. Comput.
Syst. 16, 2 (1998), 133–169.

[44] Leslie Lamport. 2005. Generalized Consensus and Paxos. Technical
Report 33. Microsoft Research.

[45] Daan Leijen, Manuel Fähndrich, and Sebastian Burckhardt. 2011. Pret-
tier concurrency: purely functional concurrent revisions. In Haskell
Symposium. ACM, 83–94.

[46] Ruy Ley-Wild and Aleksandar Nanevski. 2013. Subjective auxiliary
state for coarse-grained concurrency. In POPL. ACM, 561–574.

[47] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth
Gilbert, and Prateek Saxena. 2016. A Secure Sharding Protocol For
Open Blockchains. In CCS. ACM, 17–30.

[48] Nancy A. Lynch and Mark R. Tuttle. 1989. An Introduction to In-
put/Output Automata. CWI Quarterly 2 (1989), 219–246.

[49] Iulian Moraru, David G. Andersen, and Michael Kaminsky. 2013. There
is more consensus in Egalitarian parliaments. In SOSP. ACM, 358–372.

[50] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash sys-
tem. Abailable at http://bitcoin.org/bitcoin.pdf.

[51] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. 1999. Prin-
ciples of program analysis. Springer.

[52] Peter W. O’Hearn. 2007. Resources, concurrency, and local reasoning.
Theor. Comput. Sci. 375, 1-3 (2007), 271–307.

[53] Ontology Research Team. 2019. Ontology Sharding, Draft
v0.2. https://github.com/ontio/documentation/blob/master/sharding/
ontology-sharding.pdf.

[54] Manan Patel. 2019. Ethereum Series – Understanding Nonce.
Blog post available at https://medium.com/swlh/ethereum-series-
understanding-nonce-3858194b39bf.

[55] Prakash Prabhu, Soumyadeep Ghosh, Yun Zhang, Nick P. Johnson,
and David I. August. 2011. Commutative set: a language extension for
implicit parallel programming. In PLDI. ACM, 1–11.

[56] George Pîrlea, Amrit Kumar, and Ilya Sergey. 2021. CoSplit (PLDI 2021
Artefact). https://doi.org/10.5281/zenodo.4674301

[57] John C. Reynolds. 1974. Towards a theory of type structure. In Pro-
gramming Symposium (LNCS, Vol. 19). Springer, 408–423.

[58] Martin C. Rinard and Pedro C. Diniz. 1997. Commutativity Analysis:
A New Analysis Technique for Parallelizing Compilers. ACM Trans.
Program. Lang. Syst. 19, 6 (1997), 942–991.

[59] Vikram Saraph and Maurice Herlihy. 2019. An Empirical Study of
Speculative Concurrency in Ethereum Smart Contracts. In Tokenomics
(OASIcs, Vol. 71). Schloss Dagstuhl, 4:1–4:15.

[60] Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit Kumar,
Anton Trunov, and Ken Chan Guan Hao. 2019. Safer smart contract
programming with Scilla. PACMPL 3, OOPSLA (2019), 185:1–185:30.

[61] Ilya Sergey, Dimitrios Vytiniotis, and Simon L. Peyton Jones. 2014.
Modular, higher-order cardinality analysis in theory and practice. In
POPL. ACM, 335–348.

[62] Dieter Shirley. 2018. ERC-721 contract specification. http://erc721.org/.
[63] Alex Skidanov and Illia Polosukhin. 2019. Nightshade: Near Protocol

Sharding Design. https://near.org/downloads/Nightshade.pdf.
[64] Flora Sun. 2018. UTXO vs Account/Balance Model. Online blog

post, available at https://medium.com/@sunflora98/utxo-vs-account-
balance-model-5e6470f4e0cf.

[65] Ewa Syta, Iulia Tamas, Dylan Visher, David Isaac Wolinsky, Philipp
Jovanovic, Linus Gasser, Nicolas Gailly, Ismail Khoffi, and Bryan Ford.
2016. Keeping Authorities "Honest or Bust" with Decentralized Wit-
ness Cosigning. In IEEE Symposium on Security and Privacy. IEEE
Computer Society, 526–545.

[66] Nick Szabo. 1994. Smart Contracts. Online manuscript.
[67] Tezos Foundation. 2018. Michelson: the language of Smart Contracts

in Tezos. https://tezos.gitlab.io/whitedoc/michelson.html Online;
accessed 4 March 2020.

[68] Omer Tripp, Roman Manevich, John Field, and Mooly Sagiv. 2012.
JANUS: exploiting parallelism via hindsight. In PLDI. ACM, 145–156.

[69] Ethereum Wiki. 2020. On Sharding Blockchains.
[70] Gavin Wood. 2014. Ethereum: A Secure Decentralized Generalised

Transaction Ledger.
[71] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. 2018.

RapidChain: Scaling Blockchain via Full Sharding. In CCS. ACM, 931–
948.

[72] Zilliqa Team. 2017. The Zilliqa Technical Whitepaper. Available at
https://docs.zilliqa.com/whitepaper.pdf.

15

https://elrond.com/assets/files/elrond-whitepaper.pdf
https://elrond.com/assets/files/elrond-whitepaper.pdf
https://en.bitcoinwiki.org/wiki/ERC20
https://en.bitcoinwiki.org/wiki/ERC20
http://solidity.readthedocs.io
https://harmony.one/pdf/whitepaper.pdf
https://blog.zilliqa.com/provisioning-sharding-for-smart-contracts-a-design-for-zilliqa-cd8d012ee735
https://blog.zilliqa.com/provisioning-sharding-for-smart-contracts-a-design-for-zilliqa-cd8d012ee735
http://bitcoin.org/bitcoin.pdf
https://github.com/ontio/documentation/blob/master/sharding/ontology-sharding.pdf
https://github.com/ontio/documentation/blob/master/sharding/ontology-sharding.pdf
https://medium.com/swlh/ethereum-series-understanding-nonce-3858194b39bf
https://medium.com/swlh/ethereum-series-understanding-nonce-3858194b39bf
https://doi.org/10.5281/zenodo.4674301
http://erc721.org/
https://near.org/downloads/Nightshade.pdf
https://medium.com/@sunflora98/utxo-vs-account-balance-model-5e6470f4e0cf
https://medium.com/@sunflora98/utxo-vs-account-balance-model-5e6470f4e0cf
https://tezos.gitlab.io/whitedoc/michelson.html
https://docs.zilliqa.com/whitepaper.pdf

	Abstract
	1 Introduction
	2 Motivation and Key Ideas
	2.1 Contract Usage in Ethereum
	2.2 Towards Sharding an ERC20 Contract
	2.3 Commutativity and State Ownership
	2.4 Pragmatic Considerations and Technical Setup

	3 CoSplit Analysis in a Nutshell
	3.1 The Language
	3.2 Inferring Transition Summaries
	3.3 State Footprints
	3.4 Contribution Types
	3.5 Calculating Sharding Signatures

	4 Enabling Parallelism with CoSplit
	4.1 The Sharding Model
	4.2 Revising the Account-Based Blockchain Model
	4.3 CoSplit in Action

	5 Evaluation
	5.1 Evaluating the Analysis
	5.2 Evaluating Sharded Executions

	6 Discussion and Future Work
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

