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Abstract
Ths document describes the language grammar and runtime seman-
tics of S�����, an intermediate-level language for smart contracts
executed on top of Z������ blockchain. In addition to the key lan-
guage components, we also outline the static typing discipline for
S�����, as well as its translation to C�� for machine-assisted formal
veri�cation of smart contracts.

1 Introduction
S����� programming language has been proposed to tackle the chal-
lenge of constructing provably correct smart contracts on Z������
blockchain [11]. In this manuscript we present its syntax, static,
and dynamic semantics, as well as describe its model of interaction
with a blockchain targeting multi-shard execution. We split the
description of S�����’s syntax into several fragments, focusing on
several orthogonal programming aspects, outlined in the corre-
sponding sections: types and pure expressions (Section 2), e�ectful
computations (Section 3), and, communication primitives (Section 4),
culminating with the de�nition of the top-level contract structure in
Section 4.3. The remaining sections explain S�����’s lexical syntax
(Section 5) and serialisation for data types and messages 6.

2 ���: Pure Fragment of S�����
We start by presenting the language ��� of the pure expression frag-
ment of S�����, wich is very much inspired by the Girard-Reynolds’
System F [3, 9] (aka polymorphic lambda-calculus) with elements
of Standard ML [5], the C��� language of the Glasgow Haskell
Compiler [4, 10] and Coq’s Calculus of Inductive Constructions [2].
We have chosen System F as our expression language for the it
features parametric polymorphism (i.e., allows one to construct
reusable de�nitions) and also enjoys strong normalisation (i.e., eval-
uation of expressions written in it always terminates). A limited
support for structural (primitive) recursion in ��� for a number of
embedded algebraic data types is provided via built-in recursion
principles (cf. Section 2.2.4).

2.1 Types
Every expression in ��� has a type, capturing its structural proper-
ties. Every well-formed expression has a type, which can be stati-
cally checked at the compilation type, such a type determines a set
of values the expression can be evaluated to at run-time. Figure 1
presents basic data types of the language, which are either primi-
tive (P ) or parametric, i.e., generic, T , S , which might include type
variables � , � . The standard notation hT i denotes a possibly empty
sequence of (possibly similar) occurrences of T , i.e., T1, . . . ,Tn . We
denote the union of primitive and fully instantiated (i.e., containing
no type variables) types as ground.

Notational conventions. In Figure 1 and further in this document,
P ranges over built-in primitive types, T , S range over arbitrary

Primitive type P ::= Int Integer
String String
Hash Hash
BNum Block number
Address Account address

Type T , S ::= P primitive type
Map P T map
Message message
T -> S value function
D hTk i instantiated data type
� type variable
forall �.T polymorphic function

Figure 1. Syntax of ��� types.

types, � , � range over type variables, D ranges over type con-
structors. The notation hxk i stands for a sequence of one or more
occurrences of x , indexed by k . The notation hxi is a shortcut of
zero or one occurrence of x . In the actual program syntax, paren-
theses ( ... ) are used to disambiguate nested applications of type
constructors.

2.1.1 Primitive data types
A selection of primitive data types is standard for a functional ML-
style language. Integers are signed and range fromMININT = �231
toMAXINT = 231�1. In addition to that, the Int data type includes
two special values, Inf,�Inf, andNaN thatmake basic operations on
it totally de�ned, as, e.g., in the case 0/0 = Inf, and Inf+�Inf = NaN.
The datatype of characters uses two bytes, similarly to integers,
and, thus, can encode UTF-16 character set. Other primitive types
include block and transaction hashes, BNum and btime for block
number and time, correspondingly,1 thash for transaction hashes
and Hash for general-purpose hash values, obtained by means of a
standard SHA3 256 implementation.

2.1.2 Parametric types
In addition to primitive types, we provide a a �xed number of
parametric (higher-order) types that come with a number of con-
structors and can be used to construct a variety of data structure to
be operated in a purely functional style [6].

The initial language proposal includes ML-style pairs (prod-
uct type) and choices (tagged sum type), as well lists and options,
encoded as a syntactic sugar on top of the former two higher-
order types. Each of such types is parameterised by either one
or more type variables (referred to as T , S,R), which are all as-
sumed to be eventually instantiated via some is a ground types.

1Their precise implementation is to be de�ned later, although they come as opaque
types with a �xed set of operations, such as comparison  for ordering.



Expressions (pure)
Term Meaning Description

Expression e ::= f simple expression
let x h: T i = f in e let-form

Simple expression f ::= l primitive literal
x variable
{ hentryik } Message
fun (x : T ) => e function
builtin b hxk i built-in application
x hxk i application
tfun � => e type function
@x T type instantiation
C h {hTk i} i hxk i constructor instantiation
match x with h | selk i end pattern matching

Selector sel ::= pat => e
Pattern pat ::= x variable binding

C hpatk i constructor pattern
( pat ) paranthesized pattern
_ wildcard pattern

Message entrry entry ::= b : x
Name b identi�er

Figure 2. Syntax of ��� expressions.

Operation Symbol Parameters Result type Result Remarks

Structural equality eq (x : T ) (� : T ) bool x = � T is any ground type
Integer addition add (x : Int) (� : Int) Int x

b+ � cf. details in §2.2.2
Integer subtraction sub (x : Int) (� : Int) Int x b� � cf. details in §2.2.2
Integer multiplication mult (x : Int) (� : Int) Int x

b⇥ � cf. details in §2.2.2
Integer division div (x : Int) (� : Int) Int x

b/ � cf. details in §2.2.2
Integer remainder mod (x : Int) (� : Int) Int x

dmod � cf. details in §2.2.2
Integer comparison lt (x : Int) (� : Int) bool x < � cf. details in §2.2.2
Hashing hash (x : T ) Hash SHA3 256 hash
Time comparison tlt (x : btime) (� : btime) bool x < �

Block # comparison blt (x : BNum) (� : BNum) bool x < �

Type conversions

nat to Int conversion toint (x : nat) Option Int
Some x as Int if x  MAXINT
None otherwise

Int to nat conversion tonat (x : Int) Option nat
Some x as nat if x � 0
None otherwise

Figure 3. Built-in operations and conversions on primitive data types.

2.3 Static Semantics
(Ilya: Standard typing rules for System F)

2.4 Operational Semantics for ��� Expressions
(Ilya: TODO: CEK machine comes here)

2.5 Examples
Let us now see several examples of actual programs written in ���.

(Ilya: TODO: provide example programs.)

3 Computations and Commands
The following categories are present, all commands are in the CPS
style, ending via either send or return.

• Modifying contract �elds;
• Interacting with the blockchain (what are the primitives)?
• try/catch
• Exceptions;
• Events;
• Accepting funds (inverse of payable);
• Sending funds;
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Statements (effectful)

x <- f

f := x

x = e

match x with pat => s end

x <- &B

accept

send ms

s ::= read from mutable field 

store to a field 

assign a pure expression 

pattern matching and branching 

read from blockchain state 

accept incoming payment 

send list of messages


