
185

Safer Smart Contract Programming with Scilla

ILYA SERGEY, Yale-NUS College, Singapore and National University of Singapore, Singapore

VAIVASWATHA NAGARAJ, Zilliqa Research, India

JACOB JOHANNSEN, Zilliqa Research, Denmark

AMRIT KUMAR, Zilliqa Research, United Kingdom

ANTON TRUNOV, Zilliqa Research, Russia

KEN CHAN GUAN HAO, Zilliqa Research, Malaysia

The rise of programmable open distributed consensus platforms based on the blockchain technology has

aroused a lot of interest in replicated stateful computations, aka smart contracts. As blockchains are used

predominantly in financial applications, smart contracts frequently manage millions of dollars worth of virtual

coins. Since smart contracts cannot be updated once deployed, the ability to reason about their correctness

becomes a critical task. Yet, the de facto implementation standard, pioneered by the Ethereum platform,

dictates smart contracts to be deployed in a low-level language, which renders independent audit and formal

verification of deployed code infeasible in practice.

We report an ongoing experiment held with an industrial blockchain vendor on designing, evaluating,

and deploying Scilla, a new programming language for safe smart contracts. Scilla is positioned as an

intermediate-level language, suitable to serve as a compilation target and also as an independent programming

framework. Taking System F as a foundational calculus, Scilla offers strong safety guarantees by means of type

soundness. It provides a clean separation between pure computational, state-manipulating, and communication

aspects of smart contracts, avoiding many known pitfalls due to execution in a byzantine environment. We

describe the motivation, design principles, and semantics of Scilla, and we report on Scilla use cases provided

by the developer community. Finally, we present a framework for lightweight verification of Scilla programs,

and showcase it with two domain-specific analyses on a suite of real-world use cases.

CCS Concepts: • Software and its engineering → Functional languages; Distributed programming

languages; • Theory of computation→ Program analysis.

Additional Key Words and Phrases: Blockchain, Smart Contracts, Domain-Specific Languages, Static Analysis

ACM Reference Format:

Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit Kumar, Anton Trunov, and Ken Chan Guan Hao.

2019. Safer Smart Contract Programming with Scilla. Proc. ACM Program. Lang. 3, OOPSLA, Article 185

(October 2019), 30 pages. https://doi.org/10.1145/3360611

1 INTRODUCTION

Smart contracts are self-enforcing, self-executing protocols governing an interaction between
several (mutually distrusting) parties. Initially proposed by Szabo (1994), this idea could only be
implemented in a practical setting more than fifteen years later, with the rise of open byzantine
consensus protocols powered by the blockchain technology (Bano et al. 2017; Pîrlea and Sergey

Authors’ addresses: Ilya Sergey, Yale-NUS College, Singapore, National University of Singapore, Singapore, ilya.sergey@yale-

nus.edu.sg; Vaivaswatha Nagaraj, Zilliqa Research, India, vaivaswatha@zilliqa.com; Jacob Johannsen, Zilliqa Research,

Denmark, jacob@zilliqa.com; Amrit Kumar, Zilliqa Research, United Kingdom, amrit@zilliqa.com; Anton Trunov, Zilliqa

Research, Russia, anton@zilliqa.com; Ken Chan Guan Hao, Zilliqa Research, Malaysia, ken.changuanhao@gmail.com.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2019 Copyright held by the owner/author(s).

2475-1421/2019/10-ART185

https://doi.org/10.1145/3360611

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3360611
https://doi.org/10.1145/3360611

185:2 Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit Kumar, Anton Trunov, and Ken Chan Guan Hao

2018). While simple forms of smart contracts were already available for regulating exchange of
virtual coins in earlier cryptocurrencies such as Bitcoin (Nakamoto 2008), smart contracts owe
their wide adoption to the Ethereum framework (Wood 2014). Ethereum-style smart contracts can
be thought of as replicated reactive objects that can store arbitrary state and execute arbitrary
computations. Each interaction of an end client with a smart contract happens in a transaction,
during which more contracts can be invoked transitively. In addition to performing replicated
computations, such transactions result in altering the state and transferring coins between the
smart contracts, and also in transferring coins between accounts, which might belong to both end
users and contractsÐall those changes reproduced across the entire shared blockchain state.
The design of its run-time environment for smart contractsÐthe Ethereum Virtual Machine

(EVM)Ðadopted a number of choices striving to find a balance between (a) expressivity, (b) perfor-
mance and (c) safety. To account for (a), EVM offers a Turing-complete low-level language, whose
features, amongst others, include arbitrary interaction between contracts (with any contract’s
code accessible to any other contract), dynamic contract creation, and ability to introspect on the
entire state of the Ethereum blockchain. Such versatility made EVM a very popular platform for
developing high-level languages to compile to, which in turn resulted in an explosion of Ethereum
applications ranging from fully decentralised auctions and fundraisers, crowdfunding to multiplayer
games, and even fraud schemes. The performance aspect (b) has been addressed by designing EVM
so it would be a suitable source for just-in-time compilation, thus allowing one to substitute a
reference interpreter with an optimised back-end at the client side. Finally, the safety aspect (c) has
not received a lot of attention, with the rationale that any failed smart contract execution would
simply lead to a transaction that initiates it not taking any effect.
Having a very expressive language with weak safety guarantees has led to the discovery of a

number of vulnerabilities and potential exploits in smart contract implementations (Atzei et al.
2017; Luu et al. 2016), with some of them resulting in the loss of tens of millions of US dollars
worth of Ethereum currency (Alois 2017; del Castillo 2016). The fact that most of those contracts
were written in a high-level language, Solidity, and compiled down to EVM has contributed to
this state of affairs, due to multiple bugs discovered in the compiler itself (cf. Known Bugs in
Solidity Compiler). Finally, since contracts must be deployed as EVM bytecode, independent audit
of potentially malicious third-party contracts has proved difficult.
The research community has enthusiastically responded to the challenge of reasoning about

Ethereum smart contracts with an explosion of tools and techniques for verification and detection
of vulnerabilities, via SMT (Alt and Reitwießner 2018; Bansal et al. 2018; Marescotti et al. 2018)
and symbolic execution (Chang et al. 2018; Kalra et al. 2018; Kolluri et al. 2018; Krupp and Rossow
2018; Luu et al. 2016; Marescotti et al. 2018; Nikolić et al. 2018), dynamic (Grossman et al. 2018)
and static analysis (Grech et al. 2018; Tikhomirov et al. 2018; Tsankov et al. 2018), and certified
programming (Amani et al. 2018; Bhargavan et al. 2016; Grishchenko et al. 2018).
We believe that the area of smart contracts is still in its youth. In this work we have therefore

decided to venture in a different direction, giving priority to the safety concern (c), and rethinking
Ethereum’s takes on (a) and (b) by proposing new foundations for blockchain-based programming.

1.1 Our Proposal

As the main purpose of smart contracts is to provide a transparent way to implement decen-
tralised accounting, with safety being our key concern, we depart from Ethereum’s low-level
Turing-complete execution model. As an alternative, we propose Scilla: a novel intermediate-level
functional smart contract programming language. By łintermediatež we mean that Scilla is de-
liberately minimalistic, and implements exactly its formalisation, reducing syntactic sugar to the
necessary minimum in the tradition of intermediate representations adopted by optimisers (Peyton

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

Safer Smart Contract Programming with Scilla 185:3

Jones 1987) and verified compilers (Kumar et al. 2014), and allowing for deployment of executable
contract source code (as opposed to EVM low-level bytecode) to the blockchain. Scilla aims to
achieve both sufficient expressivity and tractability, while enabling formal contract verification, by
adopting the following design principles based on separation of programming concerns:

• Separating computation from communication. Scilla contracts are structured as commu-
nicating automata; every in-contract computation (e.g., changing its balance or computing the
result of a function) is implemented as a standalone, atomic transition, i.e., without involving any
other parties. The automata-based structure makes it possible to disentangle the contract-specific
effects (i.e., transitions) from blockchain-wide interactions (i.e., sending/receiving funds and
messages), thus side-stepping large classes of vulnerabilities (Gün Sirer 2016) and providing a
principled reasoning mechanism about safety and temporal properties.
• Pure and effectful computations. Any in-contract computation happening within a transition
has to terminate, and has to have a predictable effect on the state of the contract and the
execution. To this end, we draw inspiration from functional programming with effects, making
a distinction between pure expressions (e.g., expressions with primitive data types), impure
local state manipulations (i.e., reading/writing into contract state) and blockchain reflection (e.g.,
reading the current block number).

For Scilla’s pure expression fragment, in which most of the computations happen, we adopt a
version of the polymorphic lambda calculus (System F) (Girard 1972; Reynolds 1974)Ða choice
dictated by its foundational properties (e.g., parametric polymorphism), the abundance of interactive
theorem provers supporting it, and a large body of research on static analysis and compilation
techniques for functional languages having System F in their core (Kumar et al. 2014; Peyton Jones
1987). We guarantee that every contract transition terminates by excluding general recursion from
the language, and providing instead a set of structural recursion schemes (aka fold functionals, or
folds (Danvy and Spivey 2007)).

We argue for the viability of our proposal by delivering on the following in application to Scilla:

• Safety. Scilla provides standard memory and execution safety guarantees by adopting and
extending the type theory of System F. It also employs the type checker to ensure the validity of
inter-contract interactions.
• Minimalism. The Scilla reference interpreter and type checker are only a few dozen lines
of OCaml code each. The interpreter implements a modular semantics for failure tracking and
accounting for resource usage, allowing for inexpensive construction of static analysers.
• Expressiveness. Despite the lack of general recursion, Scilla has been successfully used to
implement all classes of most commonly deployed smart contracts, including auctions, ICOs,1

wallets, and multiplayer games.
• Verification friendliness. We have built, on top of Scilla, a framework implementing analyses
for custom domain-specific properties, which we showcase by developing and applying two
concrete analyses, described in Sec. 5: (a) resource consumption and (b) tracking cash-flows in
the state of a contract. We foresee the straightforward embedding of Scilla into existing proof
assistants (e.g., Coq), although the development of such an embedding is future work.

1.2 Pragmatic and Conceptual Contributions

The central pragmatic contributions of our work are:

• the design and implementation of Scilla, a minimalistic type-safe functional language for smart
contracts, equipped with a formal semantics from the start,

1Initial Coin Offering, a form of a crowdfunding-implementing contract.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

185:4 Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit Kumar, Anton Trunov, and Ken Chan Guan Hao

• a report on the experience to date of using Scilla in production and by the community developers,
as deployed on top of a realistic blockchain protocol, and
• a discussion on the adopted and rejected choices in the smart contract language design, as well
as their implications for the user experience, performance, and the overall blockchain ecosystem.

In this work, we do not claim to introduce any novel programming language mechanisms. Instead,
we show that by building on a foundational calculus one can achieve the expressive power necessary
for implementing many kinds of realistic applications in a new emerging problem domain.

Theminimalistic nature of Scilla and its well-defined semantics enables the following conceptual
contributions, advancing the state of the art in smart contract programming:

• a generic and extensible framework for lightweight verification of smart contracts by means of
user-defined domain-specific analyses, with inter-stage dependencies, and
• an instantiation of the framework with two domain-specific analyses: (a) worst-case resource
consumption and (b) tracking of cash-flows within a contract, and
• an extensive evaluation of Scilla wrt. performance and tractability of the contracts written in it,
the latter assessed via a suite of tailored domain-specific analyses (a) and (b).

We argue that our language design facilitates the principled development of the resource analysis (a),
while also enabling the cash-flow analysis (b), which, to the best of our knowledge, is novel.

2 OVERVIEW

Scilla is an explicitly-typed functional programming language in the ML family, with higher-order
functions, an imperative fragment, and explicit effects, encoding common operations for blockchain
applications. Fig. 1 presents the entire abstract syntax of Scilla, outlining its primitive and algebraic
types (Fig. 1a), standard constructors for algebraic data types (Fig. 1b), built-in operations (Fig. 1c),
pure expressions (Fig. 1d), imperative statements and, finally, contracts (Fig. 1e). As an abbreviation
for an ordered vector of similar syntactic atoms of the kind x , we use the notation x j to indicate
lifting to tuples, with j ranging over the elements of the vector. For instance, in the case of multiple

typed identifiers, ij : tj stands for i1 : t1, . . . , iN : tN for some N ≥ 1. We will be omitting the
indexing subscript (i.e., j in this case) if the nature of the multiple entries of a vector is clear from

the context. The grayed elements of the syntax correspond to either the artifacts of the reference

interpreter implementation (cf. Sec. 3), or have to do with the implementation of general recursion,
which the smart contract programmer has no access to. Both those cases are explained below.

In the remainder of this section we describe the main aspects of Scilla, with examples in a user-
friendly ML-style notation, explaining the most prominent design choices and their implications
wrt. the run-time behaviour of contracts, as well as their safety guarantees in a series of Intermezzos.

2.1 Contracts as State-Transition Systems

Since smart contracts are generally perceived as reactive autonomous agents, Scilla syntactically
represents them as state-transition systems, loosely similar to I/O Automata (Lynch and Tuttle
1989). Specifically, every interaction with a contract, potentially resulting in the changes of its
mutable state, receiving and transferring the funds to other parties (user accounts or contracts) is
implemented by means of transitions. Each transition is triggered by a message from a user account
or another contract, whose delivery is supplied by the underlying blockchain protocol (more on
that in Sec. 3.5). To handle the incoming messages, each transition has a unique name within a
contract, which messages aiming for it must refer to, as well as a signature, describing the types of
the expected message components, which can be then used within the transition implementation.
Each transition is executed within a transaction atomically, i.e., without transferring control to other
contracts, and results in a possible modification of the mutable state of the contract, the transfer

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

Safer Smart Contract Programming with Scilla 185:5

(signed integers) int ::= i32 | i64 | i128 | i256

(unsigned integers) uint ::= u32 | u64 | u128 | u256

(byte strings) bst ::= bystrx n | bystr

(primitive types) pt ::= int | uint | bst |

string | bnum | msg

(algebraic types) D ::= unit | bool | nat | option |

pair | list | U

(general Types) t ::= pt | map t t | t → t |

D t | α | forall α . t

(a) Types

(unit) unit ::= Unit

(booleans) bool ::= True | False

(Peano numbers) nat ::= Zero | Succ nat

(options) option α ::= None | Some α

(pairs) pair α1 α2 ::= Pair α1 α2

(lists) list α ::= Nil | Cons α

(variants) U α ::= C1 α | . . . | Cn α

(b) Algebraic data type definitions

(strings) bltstring ::= concat | substr | strlen | to_string

(blocks) bltbnum ::= blt | badd | bsub

(hashes) blthash ::= sha256 | keccak256 | ripemd160 | to_bystr | schnorr_verify | ecdsa_verify

(maps) bltmap ::= contains | put | get | remove | to_list | size

(numeric) bltnum ::= add | sub | mul | div | rem | pow

(integers) bltint ::= to_int32 | to_int64 | to_int128 | to_int256

(u. integers) bltuint ::= to_uint32 | to_uint64 | to_uint128 | to_uint256 | to_nat

(built-ins) blt ::= eq | bltstring | bltbnum | blthash | bltmap | bltnum | bltint | bltuint

(c) Built-in operations

(identifiers) i, c ::= alpha-numeric string

(Values) v ::= str :: string | κ :: int | υ :: uint | b :: bnum | bsx n s :: bystrx n | bs s :: bystr |

ms (str 7→ v) :: msg | mp tk tv (vk 7→ vv) :: map tk tv | d :: D t |

clo :: Value → EvalRes Value | tclo :: Type → EvalRes Value

(patterns) pat ::= _ | i | constr c pat

(Expressions) e ::= val v | var i | message (str 7→ i) | constr c t i | builtin blt i |

let i = e1 in e2 | fun (i : t) ⇒ e | app i ij | tfun α ⇒ e | inst i t |

match i pat ⇒ e | fix (i : t, e)

(d) Values and expressions

(statements) s ::= i1 ← i2 | i1 := i2 | i = e |

i1 [ik] := i2 | i1 ← i2 [ik] | i1 ← exists i2 [ik] |

delete i1 [ik] | i1 ← &i2 | accept | send i | event i |

match i pat ⇒ s

(library functions) L ::= let i = e

(fields) F ::= if : tf = ef

(transitions) T ::= ⟨iT , ij : tj , s⟩

(contracts) C ::= ⟨iC , L, ip : tp, F, T ⟩

(e) Statements, transitions, and contracts

Fig. 1. Abstract syntax of Scilla. Grayed parts are not available at the program level.

and/or acceptance of funds, the emission of a series of new messages to be sent, and zero or more
events, used to inform the external blockchain clients about certain outcomes of the interaction.

Intermezzo 1 (On DAO and Reentrancy Vulnerability). The DAO2 vulnerability, which is one of
the most famous exploits in the history of Ethereum smart contracts, was caused by the fact that
a contract can transfer control to another, potentially malicious contract in the midst of its own
execution by simply calling the other contract as a function. That would allow a malicious contract
to call the vulnerable contract back, thus potentially exploiting the consequences of the vulnerable

2Decentralised Autonomous Organization (Ethereum Foundation 2018a).

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

185:6 Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit Kumar, Anton Trunov, and Ken Chan Guan Hao

1 library Crowdfunding

2 (* Map ByStr20 Uint128→ ByStr20→ Uint128→ *)

3 (* Option (Map ByStr20 Uint128) *)

4 let check_update = (* ... *)

5 (* BNum→ BNum→ Bool *)

6 let blk_leq = (* ... *)

7

8 contract Crowdfunding

9 (* Immutable parameters *)

10 (owner : ByStr20, max_block : BNum, goal : Uint128)

11 (* Mutable fields *)

12 field backers : Map ByStr20 Uint128 = Emp ByStr20 Uint128

13 field funded : Bool = False

14 (* Transitions *)

15 transition Donate (sender : ByStr20, amount : Uint128)

16 transition GetFunds (sender : ByStr20, amount : Uint128)

17 transition ClaimBack (sender : ByStr20, amount : Uint128)

Fig. 2. A signature of the Crowdfunding contract.

contract being in an intermediate state of the computation. This behaviour, dubbed reentrancy (Gün
Sirer 2016), in the case of DAO led to the draining of USD 50 million worth of cryptocurrency, and
resulted in a fork in the blockchain going against the consensus protocol, as well as sparking a lot
of research on ensuring future contract implementations being reentrancy-safe (Grossman et al.
2018; Rodler et al. 2019; Tsankov et al. 2018). In contrast, Scilla sidesteps the reentrancy issue by
design; by making the message-passing communication the only way for the contracts to interact,
we enforce atomicity of changes in a contract state.3

For an intuition of a contract layout, consider a Crowdfunding smart contract. The goal of the
contract is, as the name implies, to collect donations aiming for a certain goal by a specified deadline,
given as a łmaximalž block number in the underlying blockchain.4 It should then allow potential
backers to donate certain amounts of funds, making records of those donations. If the goal is
reached by the deadline, the owner of the contract, specified upfront via its account address, should
be able to extract the funds, at which point the fulfillment of their obligations to the backers is no
longer a concern that could be addressed via the blockchain. If the goal is not reached before the
deadline, each backer should be able to claim their donation back.

Fig. 2 shows a high-level signature of Crowdfunding with executable code omitted. The prelude of
the contract defines the library of the pure (i.e., side effect-free) functions that the contract can use
to perform computations on the data stored in its state, in a referentially-transparent way (Mitchell
2003). We elide the implementations of the library functions check_update (used to conditionally
update the map of backers and their donations) and blk_leq (used to compare two block numbers)
and only show their types, whose meaning should be clear. Each contract’s pure library can be
referred by other contracts, independently deployed later, enabling reuse of the code, shared by
means of the replicated blockchain state (as will be described Sec. 3.5). The Crowdfunding contract,
though, does not rely on any external functions.

Intermezzo 2 (External Libraries and Parity Wallet hack). Another famous hack in Ethereum,
resulting USD 146 million worth of coins becoming inaccessible (Alois 2017), was caused by

3Indeed, other concurrency-related issues, e.g., caused by non-determinism of transaction scheduling, remain to be present

even in the łtransition-as-an-atomic-changež model adopted by Scilla. However, detecting those issues requires more

domain-specific input from the user (Kolluri et al. 2018), and, we believe, should be addressed at a higher-level by means of

a suitable domain-specific language for particular smart contract scenarios (e.g., interacting with an off-chain oracle)
4This is sound, as block numbers grow monotonically, without gaps.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

Safer Smart Contract Programming with Scilla 185:7

mutability and side-effects in libraries implemented by third-party contracts.5 Problems of this kind
are avoided in Scilla by making libraries immutable and purely functional, while keeping them
reusable by other contracts. Such client contracts, when being deployed, have to explicitly link to
the libraries available on the blockchain.

Following the library is the contract signature itself. It starts from the three immutable contract
parameters: the owner address (represented by a byte string of length 20), the deadline (max_block),
and the desired goal. Then follows two fields constituting the contract’s mutable state; a map
backers containing the record of donations, and the boolean flag funded indicating whether the
campaign has succeeded.

Finally, the contract łbodyž is the three transitions, corresponding to the intended functionality
outlined above. Each transition expects exactly two fields to be present in the incoming message,
and the implementation treats them as formals of the transition. In the deployed language we allow
for sender and amount specifically to be omitted from a transition signature, as they are supplied by
the underlying blockchain back-end with the values of the corresponding types.

2.2 Imperative Fragment

The listing on the next page provides a large part of the implementation of the Donate transition of
the Crowdfunding contract, which performs a number of necessary checks, and then records the
new donation by updating the map of backers. This logic necessitates changes to the contract’s
fields, and requires information about the outcome of the interaction to flow to the outside world,
so the logic falls into the imperative fragment of the language.

1 blk← & BLOCKNUMBER;

2 in_time = blk_leq blk max_block;

3 match in_time with

4 | True ⇒
5 bs← backers;

6 res = check_update bs sender amount;

7 match res with

8 | Some bs1⇒
9 backers := bs1;

10 accept;

11 e = {eventname : "Donated"; donor : sender; ...};

12 event e

13 (* more instructions for other branches *) end end

Fig. 3. A fragment of a Donate transition.

Scilla, being an intermediate language,
enforces the programs written in A-
Normal Form (Flanagan et al. 1993), where
each result of a computation, pure or im-
perative, is used after having been as-
signed to an immutable variable. The im-
perative code in Fig. 3 first reads the num-
ber of the block, corresponding to the
transaction executing the current interac-
tion (& BLOCKNUMBER) into a variable blk. It
then assigns the boolean result of invoking
the library function blk_leq to in_time,
which is subsequently scrutinised in a pattern-matching statement (in Scilla, pattern match-
ing generalises the conditional statements, as booleans are treated uniformly with other algebraic
data types). The first branch, corresponding to still ongoing campaign (True) proceeds with reading
the contents of the field backers into bs and conditionally updating it via check_update. Finally, in
the case of successful update, the new donation map bs1 is written back to backers, the donation is
accepted via the accept command, and the event e, indicating the successful donation, is issued.

Intermezzo 3 (On Accepting Money Explicitly). Initially, in Ethereum any successful call to a smart
contract by a client would result with the former łsilentlyž accepting the funds. This is not always a
welcome behaviour, and it might lead to the loss of money. As the result, this has lead to introducing
the payable modifier into Solidity, Ethereum’s programming language, along with a number
of related conventions.6 In contrast, Scilla’s program-level accept command, provides a finer
granularity for controlling such an important event as a transfer of funds.

5https://medium.com/@Pr0Ger/another-parity-wallet-hack-explained-847ca46a2e1c
6https://solidity.readthedocs.io/en/v0.5.7/contracts.html#fallback-function

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

https://medium.com/@Pr0Ger/another-parity-wallet-hack-explained-847ca46a2e1c
https://solidity.readthedocs.io/en/v0.5.7/contracts.html#fallback-function

185:8 Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit Kumar, Anton Trunov, and Ken Chan Guan Hao

Striving for simplicity, Scilla provides only a few mechanisms for structured imperative control
flow: straight-line command sequences, and pattern-matching. There are no loops, no effectful
recursion, and no calls to procedures that change the contract’s state. Finally, for efficiency reasons,
Scilla features (amortised) constant-time read and update of Map-typed fields of a contract, by
referring to the (possibly nested) entries of a map field f as f[k1]...[kn], as shown in Fig. 1e.

2.3 Expressions

Most of the computations in Scilla take place in its pure fragment, similar in its syntax to the
Haskell Core language (Peyton Jones 2013). Expressions serve as contract library functions, field
initialisers, and right-hand sides of statements of the form x = ewhich assign the result of evaluating
e to a single-assigned, immutable local variable x .

Primitive types and built-in operations. For the contracts to interact with the back-end blockchain
layer, we introduce a number of primitive data types and built-in operations on them. All such data
types are listed in Fig. 1a, and the operations on them are provided in Fig. 1c.

The treatment of signed and unsigned integers (int and uint) of different bit depths is standard,
except for the fact that an integer overflow causes a run-time exception, and thus requires explicit
checks in a contract implementation. Of some interest are the two types of byte strings, bystrx n
and bystr. The former is a family of (value-)dependent types, parameterised by the length of the
string and allowing for operations (e.g., for equality via eq) only with the values of the same type.
The type of addresses in the underlying blockchain is represented by values of type ByStr20 (Fig. 2).
Some byte strings, however, do not have a length that is known statically (e.g., input to hashing via
the keccak256 operation), hence they are given type bystr. Those byte strings can still be passed
around as values and compared with other values of bystr. However, length-dependent instances
of bystrx n need to be first cast to bystr via to_bystr in order to be treated as such.
Some built-in operations from Fig. 1c are polymorphic in the types of their input arguments,

and the type of their result is determined by the type of the inputs. Examples of such are add, mul

and other operations that manipulate both signed and unsigned integers alike, but require the
arguments to have the same type, which would be the same as the type of the result. Similarly, the
overloaded eq compares for equality on instances of the same data type. The type system of Scilla,
described in Sec. 4, takes this built-in polymorphism into account.

Algebraic data types. Scilla comes with a number of the most common predefined Algebraic
Data Types (ADTs), all listed in Fig. 1b, as well as a mechanism to describe user-defined polymor-
phic variant types, which are non-recursive. Two specific ADTs, nat and list form the basis for
encoding iteration in Scilla, which otherwise has no mechanism for looping and general recursion.
Specifically, both nat and list come equipped with structural recursion principles, both implemented
as higher-order combinators (considered as implicitly imported functions from Scilla standard
library), whose polymorphic type signatures are as follows:

nat_fold : forall 'A. ('A → Nat → 'A) → 'A → Nat → 'A

list_foldl: forall 'A 'B. ('A → 'B → 'B) → 'B → (List 'A) → 'B

list_foldr: forall 'A 'B. ('B → 'A → 'B) → 'B → (List 'A) → 'B

In case of list, the recursion principles correspond to two ways of łfoldingž the list, dubbed fold-
left and fold-right, and for nat, just one recursion principle is provided since the two left/right-styles
of łfoldingž a natural number are equivalent (Danvy 2019). Internally, all three recursion schemes
are implemented using the fixpoint combinator fix (i : t, e) for general recursion (cf. Fig. 1d), which
is not available at the level of client programs and whose semantics is standard (Sec. 3). That said,

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

Safer Smart Contract Programming with Scilla 185:9

the recursion principles of Scilla are provably terminating via a syntactic measure, and as such
are provided to the end programmers.7

Intermezzo 4 (Predictable gas consumption). A contract execution can be interrupted if the amount
of the computational resources it has consumed (aka gas) exceeds a certain limit (Wood 2014).
General recursion and while-loops make it difficult to reason about gas consumption, and also
makes contracts prone to so-called łout-of-gasž-related exploits (Chen et al. 2017; Grech et al. 2018).
By replacing loops and recursion with structural folds, whose consumption depends only on the
consumption of the iterated function and the size of a data value, Scilla enables effective static
analysis of gas usage (cf. Sec. 5.1).

1 (* forall 'A. forall 'B. ('A→ 'B)→ List 'A→ List 'B *)

2 let list_map = tfun 'A⇒ tfun 'B⇒
3 fun (f : 'A→ 'B)⇒ fun (l : List 'A)⇒
4 let folder = @list_foldr 'A (List 'B) in

5 let init = Nil {'B} in

6 let iter = fun (h : 'A)⇒ fun (z : List 'B)⇒
7 let h1 = f h in

8 Cons {'B} h1 z

9 in folder iter init l

Fig. 4. An implementation of List’s map combinator.

The folds are sufficient to im-
plement a rich standard library of
higher-order functions for manipulat-
ing lists and natural numbers. To wit,
Fig. 4 shows an implementation of the
canonical list_map, which is explic-
itly polymorphic, having 'A and 'B as
its type parameters. All type applica-
tions in Scilla are explicit (i.e., there
is no implicit elaborations (Pollack 1990) except for built-ins): type variables 'A and 'B are used to
instantiate the typing schema of list_foldr (@-syntax stands for the inst i t form from Fig. 1d), as
well as the List constructors Cons and Nil.

3 EXECUTION SEMANTICS

The big-step semantics for Scilla contracts is provided by a reference big-step monadic definitional
interpreter (Reynolds 1998), which is currently employed to execute contract-affecting transactions
on top of our host blockchain protocol. In our description of Scilla executions, we give up the
customary formalism for big-step semantics, which is known to suffer from explosion of the number
of rules in the presence of run-time failures and other threaded computational effects (Charguéraud
2013). Instead, we present our big-step semantics with possible run-time failures in a more concise,
(but, arguably, less orthodox) monadic Haskell-like style (Owens et al. 2016; Shali and Cook 2011),
while explaining, in plain English, the semantics of the involved meta-functions.

3.1 Evaluation of Expressions and Statements

The semantics of expressions (Fig. 5, top) is defined by the meta-function E⟦e⟧ ρ, which maps an
expression e and a run-time environment ρ to the evaluation result of meta-type EvalRes Value. Run-
time closures (value- and type-parameterised) are represented as the meta-language functions with
the of type EvalRes Value (the symbol→ in their ascribed types is thus a type of meta-functions).

For now, let us take EvalRes to be an Option-like type Result α with two constructors: Success α
and Failure, for successful and failing computations, correspondingly. The bind operation, enabling
the Haskell-style do-notation chains successful computations, while propagating a failure, and
return x simply constructs an instance of Success x .

In Fig. 5 failures are only produced explicitly in the evaluation rule for constr c t i, but the
application of meta-semantic functions may produce failures implicitly. For instance, lookup ρ i
returns a value bound by i in ρ and fails if i < dom(ρ). Similarly, tryApply f args attempts to

7Dependently-typed proof assistants, such as Coq, provide a mechanism for automatically deriving recursion principles for

inductively-defined data types, along with the proofs of their termination. In future versions of Scilla we will consider the

possibility of implementing this mechanism, even though it might complicate the analyses (Sec. 5).

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

185:10 Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit Kumar, Anton Trunov, and Ken Chan Guan Hao

E⟦·⟧ · :: Expr→ Env→ EvalRes Value

E⟦message (str 7→ i)⟧ ρ ≜ do

plds← mapM (lookup ρ) i

return ms (str 7→ plds)

E⟦constr c t i⟧ ρ ≜ do

⟨cons, D⟩ ← lookupConstr c

if arity cons , |t | then fail

else args← mapM (lookup ρ) i

return cons t args

E⟦builtin blt i⟧ ρ ≜ do

args← mapM (lookup ρ) i

tps← mapM valType args

execBuiltIn blt tps args

E⟦let i = e1 in e2⟧ ρ ≜ do

v ← eval e1 ρ

eval e2 (ρ ∪ [i 7→ v])

E⟦fun (i : ·) ⇒ e⟧ ρ ≜ do

return λ arg. eval e (ρ ∪ [i 7→ arg])

E⟦app i ij ⟧ ρ ≜ do

args← mapM (lookup ρ) ij
f ← lookup ρ i

foldLM tryApply f args

E⟦fix (i : ·, e)⟧ ρ ≜ do

letrec fix = (λ arg.

f ← eval e (ρ ∪ [i 7→ fix])

tryApply f arg)

return fix

E⟦val v⟧ ρ ≜ return v

E⟦var i⟧ ρ ≜ lookup ρ i

E⟦tfun α ⇒ e⟧ ρ ≜ do

let f = λ t . eval [t/α]e ρ

return f

E⟦inst i t⟧ ρ ≜ do

f ← lookup ρ i

foldLM tryInstType f t

E⟦match i pat ⇒ e⟧ ρ ≜ do

w ← lookup ρ i

(e, [i 7→ v]) ← matchPattern (pat ⇒ e)w

eval e (ρ ∪ [i 7→ v])

S⟦·⟧ · :: Stmt→ Conf → EvalRes Conf

S⟦i1 ← i2⟧ ⟨ρ, σ , β, γ , ι, µ, ε ⟩ ≜ do

v ← load σ i2
let ρ′ = ρ ∪ [i1 7→ v]

return ⟨ρ′, σ , β, γ , ι, µ, ε ⟩

S⟦i1 := i2⟧ ⟨ρ, σ , β, γ , ι, µ, ε ⟩ ≜ do

v ← lookup ρ i2
let σ ′ = put σ i1 v

return ⟨ρ, σ ′, β, γ , ι, µ, ε ⟩

S⟦i = e⟧ ⟨ρ, σ , β, γ , ι, µ, ε ⟩ ≜ do

v ← eval e ρ

let ρ′ = ρ ∪ [i 7→ v]

return ⟨ρ′, σ , β, γ , ι, µ, ε ⟩

S⟦accept⟧ ⟨ρ, σ , β, γ , ι, µ, ε ⟩ ≜

return ⟨ρ, σ , β + ι, γ , 0, µ, ε ⟩

S⟦i1 ← &i2⟧ ⟨ρ, σ , β, γ , ι, µ, ε ⟩ ≜ do

v ← lookup γ i2
return ⟨ρ ∪ [i1 7→ v], σ , β, γ , ι, µ, ε ⟩

S⟦send i⟧ ⟨ρ, σ , β, γ , ι, µ, ε ⟩ ≜

vm ← lookup ρ i

return ⟨ρ, σ , β, γ , ι, µ ++ vm, ε ⟩

S⟦event i⟧ ⟨ρ, σ , β, γ , ι, µ, ε ⟩ ≜

ve ← lookup ρ i

return ⟨ρ, σ , β, γ , ι, µ, ε ++ ve ⟩

S⟦match i pat ⇒ s⟧ ⟨ρ, σ , β, γ , ι, µ, ε ⟩ ≜ do

w ← lookup ρ i

(s, [i 7→ v]) ← matchPattern (pat ⇒ s)w

seval s ⟨ρ ∪ [i 7→ v], σ , β, γ , ι, µ, ε ⟩)

S⟦i1 [ik] := i2⟧ ⟨ρ, σ , β, γ , ι, µ, ε ⟩ ≜ do

vk ← mapM (lookup ρ) ik
vv ← lookup ρ i2
σ ′ ← updateAsMap σ i1 vk vv
return ⟨ρ, σ ′, β, γ , ι, µ, ε ⟩

S⟦i1 ← i2 [ik]⟧ ⟨ρ, σ , β, γ , ι, µ, ε ⟩ ≜ do

vk ← mapM (lookup ρ) ik
vr ← getAsMap σ i2 vk
return ⟨ρ ∪ [i1 7→ vr], σ , β, γ , ι, µ, ε ⟩

S⟦i1 ← exists i2 [ik]⟧ ⟨ρ, σ , β, γ , ι, µ, ε ⟩ ≜ do

vk ← mapM (lookup ρ) ik
vr ← hasAsMap σ i2 vk
return ⟨ρ ∪ [i1 7→ vr], σ , β, γ , ι, µ, ε ⟩

S⟦delete i [ik]⟧ ⟨ρ, σ , β, γ , ι, µ, ε ⟩ ≜ do

vk ← mapM (lookup ρ) ik
σ ′ ← removeFromMap σ i vk
return ⟨ρ, σ ′, β, γ , ι, µ, ε ⟩

Fig. 5. Big-step monadic semantics of Scilla expressions (top) and statements (bottom).

apply the closure f (as a meta-function) to a sequence of arguments and fails if the arity of f is
not sufficient. valType provides a type of a run-time value. The meaning (and failure model) of
the meta-functions lookupConstr and matchPattern should be clear from the context. mapM and
foldLM are the standard monadic combinators that lift the failure-threading computations to lists.
The meta-function execBuiltIn provides the semantics to built-in operations (with possible arity
and run-time type failures) and eval łvirtualisesž the recursive call to the evaluator itself. For the
time being one can think of eval e ρ as of an alias for E⟦e⟧ ρ, however, this meaning is going to
change with the change of the underlying failure-tracking monad, which we generalise in Sec. 3.3.
The bottom of Fig. 5 shows the evaluation of Scilla statements: S⟦s⟧ takes a configuration
⟨ρ,σ , β ,γ , ι, µ, ε⟩ and transforms it into a new one. Besides the environment ρ, a configuration is
comprised of the following components: σ is a storage, mapping names of mutable fields to their
values; β is a contract’s current balance; γ is an environment with immutable (for the duration
of the execution) blockchain data; ι is a non-negative number, indicating the łincomingž funds in
a message, which the contract might accept; µ is a buffer of outgoing messages to be sent at the
end of the transition; ε is a list of events to be emitted. The semantics is mostly self-explanatory,

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

Safer Smart Contract Programming with Scilla 185:11

initLibDef (let il = el) ρ ≜ do

vl ← eval ρ el
return (ρ ∪ [il 7→ vl])

initField ρ (if : tf = ef) σ ≜ do

vf ← eval ρ ef
return σ ∪ [if 7→ vf]

initContract ⟨iC , L, ip : tp, F, T ⟩ [iq 7→ vq] β ≜ do

ρlib ← foldLM initLibDef ∅ L

tq ← mapM valType vq

assert [iq 7→ tq] = [ip 7→ tp]

let ρ = ρlib ∪ [iq 7→ vq]

σinit ← foldLM (initField ρ) ∅ F

return ⟨[iq 7→ vq], σinit, β ⟩

checkMsg (ij : tj) [im 7→ vm] ≜ do

tm ← mapM valType vm

assert [ij 7→ tj] = [im 7→ tm]

handleMsg ⟨iC , L, ip : tp, F, T ⟩ ⟨ρC , σC , βC ⟩ γ ρm ≜ do

ι ← lookup ρm łamountž

iT ← lookup ρm łtagž

⟨iT , ij : tj , s⟩ ← lookup T iT

checkMsg (ij : tj) ρm
⟨·, σ ′C , βC , ·, ι

′
, µ′, ε ′⟩ ←

foldLM seval ⟨ρC ∪ ρm, σC , βC , γ , ι, [], []⟩ s

let vout =
∑

m′∈µ′ (m
′(łvaluež))

assert vout ≤ βC
return ⟨ρC , σ

′
C , βC − vout, γ , ι

′
, µ′, ε ′⟩

Fig. 6. Contract initialisation (left) and message handling (right).

with a few new meta-functions used for in-place manipulation with a map stored in a field (i.e.,
updateAsMap, getAsMap, etc), and seval, serving as an alias for S⟦·⟧.

3.2 The Life Cycle of a Contract

When a contract is initialised and deployed to the blockchain (Fig. 6, left), all its libraries (including
external ones, cf. Sec. 3.5) and fields are bound to the corresponding values.8 Initialisers for fields
can depend on library variables and on the contract’s parameters ip , but not on the values of other
fields. The main procedure initContract is invoked by the protocol participants validating the
contract-deploying transaction (aka miners), with a provided vector of contract argument values

[iq 7→ vq] and balance β . The initialiser checks dynamically (via assert) that the types of provided
arguments match the contract signature and aborts the entire transaction if they don’t.

Every time a message is received by an initialised contract instance, it is checked and processed
via the function handleMsg. Amongst other things, it performs the dynamic check, ensuring that
the intended transition (referred to via a message’s field łtagž) indeed exists and that its signature
matches the message’s components (via checkMsg). It then forms a configuration delegating the
execution to seval. Finally, it collects all outgoing transfers of funds from the messages about to
be sent into vout, ensuring that the contract has sufficient funds (vout ≤ βC), creating the final
configuration, handed back to the blockchain layer for further replication.

3.3 Tracking Gas Consumption

So far we have omitted any discussion on an important aspect of blockchain-based replicated
computations: resource consumption. A deployment of a contract or interacting with it by sending
a message typically requires an emitter to pay (in virtual funds) a certain amount of gasÐresource
consumed by the execution. If an execution exceeds the amount of gas allotted by the user, an
out-of-gas failure is raised. This way, paying for gas when proposing a transaction does not allow the
emitter to waste the computational power of other miners by requiring them to perform worthless
intensive work. Furthermore, gas fees disincentivise users to consume too much of replicated
storage, which is a valuable resource in a replicated state. In this section, we describe Scilla’s take
on tracking gas consumption.

Monadic gas accounting. The monadic representation of the big-step semantics from Fig. 5 comes
with the possibility of adding computational effects to the run-time modularly and without altering
the core interpreter logic (Liang et al. 1995; Sergey et al. 2013). We take full advantage of this

8A pure library can be deployed without an accompanying contract.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

185:12 Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit Kumar, Anton Trunov, and Ken Chan Guan Hao

Tab. 1. Aspects of gas accounting and their costs.

Static reduction cost, Cs ⟦·⟧ : Expr ∪ Stmt→ Gas

let i = e1 in e2 1

match i pat ⇒ e max(|pat |) × |pat ⇒ e |

fix (i : t, e) 1

builtin blt i 0

Dynamic built-in cost, Cb⟦·⟧ : BuiltIn→ Val∗ → Gas

concat v1 v2 length v1 + length v2
sha256v ⌈length (to_string v) ÷ 64⌉ × 15

keccak256 v ⌈length (to_string v) ÷ 136⌉ × 15

mul v1 v2 5 ∗max(size_of v1, size_of v2)

Dynamic statement cost via monadic operations from Fig. 5

load σ i size_of σ (i)

put σ i v |size_of v − size_of σ (i) |

lookup ρ i 1

updateAsMap σ i vk vv vk ∈ dom(σ (i)) ? size_of vv : |vk |

possibility by changing the definition of EvalRes Value to mimic the combination of both failure
and state monad, and capture resource consumption, in addition to propagating failure. Specifically,
we define EvalRes α as a type synonym for Gas → Result α , that is, making the computations
having it as a type to be functions, expecting a certain amount of gas (isomorphic to a natural
number), so they can be only run when a certain amount д of gas is provided.
This way, each of the monadic operations, as well as a virtualised call to eval and seval from

Fig. 5, will subtract from the amount of gas provided for contract initialisation or message handling,
so an out-of-gas error will be emitted (and propagated further) once the gas supply runs out.

Sources of gas consumption. The gas accounting discipline is implemented by three orthogonal
execution components, with examples given in Tab. 1. The first aspect of gas consumption (Tab. 1,
top) is due to the cost of reductions of expressions and statements, which is constant for all terms
except for pattern matching. Capturing it requires virtualisation of the evaluator calls by means
of eval/seval, so the gas-aware versions thereof subtract the corresponding statically-determined
amount, before passing control to the recursive call of the evaluator.

The second aspect has to do with the cost of executing built-in operations and is depicted by the
middle part of Tab. 1. The gas costs in this case are based on the measured relative performance
of the operations, as implemented in the reference interpreter. While the costs assigned for most
operations are immediate derivations of the sizes of their input arguments, the hash-related built-ins
require some care. As their implementations divide their input into blocks (of size 64 and 136 bytes
for sha256 and keccak256 respectively), the performance of this hashing depends on the number
of such blocks, resulting in the corresponding counts.
The bottom of Tab. 1 shows the gas accounting via monadic meta-functions from Fig. 5. Of

interest are the operations that modify the storage component σ of the configuration. As those
operations must penalise the execution for manipulating with large chunks of the state, the cost for
most of them is proportional to the size of the loaded/stored value. That said, lookup has a constant
cost, and put only charges for the delta in the old/new sizes of the stored value.

3.4 A Continuation-Passing Style Evaluator

The result EvalRes of evaluating a Scilla program is a composition of a state monad and a failure
monad. As the state of the contract grows large (e.g., by storing lists), this choice may cause call
stack overflows in the host language, i.e., OCaml.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

Safer Smart Contract Programming with Scilla 185:13

The state monad introduces laziness into the evaluation, wherein each intermediate expression is
wrapped into a thunk, i.e., a closure whose result depends on the amount of gas provided. Evaluating
let y = f h z in g y in this monad therefore does not reduce the expression, but instead allocates
a closure which contains a reference to the closure that is the result of evaluating f h z. When
iterated over a list (e.g., via list_foldl), this construction thus results in a composition of nested
non-tail calls. When finally run, the call stack thus grows in proportion to the length of the list,
potentially causing a call stack overflow.

Changing the underlyingmonad EvalRes to a continuationmonad of type (a → c) → c eliminates
this problem. The fact that the core evaluator for Scilla is parametric in an underlying monad
implementation means that this change does not involve changes in the core interpreter (Fig. 1),
and also allows the result type c to be specialised to embed the logic of both the result and the state
monads seamlessly (Filinski 1994). Additionally, since Scilla is shallowly embedded into OCaml
(i.e., Scilla’s run-time closures are OCaml closures), we can exploit the fact that CPS-transforming
an interpreter in the host language leads to the interpreted call-by-value language being evaluated
in CPS (Danvy and Filinski 1990). This means that the tail-call optimization of the OCaml compiler
benefits Scilla programs, even those that are not written in CPS, thus eliminating the risk of stack
overflows. We elaborate on the performance of the CPS evaluator for Scilla in Sec. 6.2.

3.5 Interaction with the Protocol Layer

The Scilla evaluator interacts with the underlying blockchain via a JSON interface that abstracts
the inner workings of the blockchain layer. The evaluator takes a set of JSON files as input, and
on success returns an output JSON to be used by the underlying blockchain layer to update the
contract state. An end user interacts with the smart contract layer via transactions. A transaction
either deploys a new contract on the blockchain, or invokes a transition on an existing contract.
The consensus of the blockchain layer establishes whether the transaction is successful.

Contract deployment. Prior to any execution, the end user must first deploy the contract on the
network by submitting a transaction containing (1) the Scilla contract code, (2) a name-to-address
mapping for external libraries used by the contract, (3) actual values for the contract’s immutable
parameters, and (4) gas to pay the cost of deployment. Once the transaction reaches the network,
nodes run a consensus protocol to validate it, during which the submitted contract is checked for
type safety (cf. Sec. 4). This involves obtaining the cached type signatures for the external libraries
the contract depends upon (retrieved via their addresses from the blockchain state), and adding
them to the type-checking environment. A check is also performed on the validity of the immutable
parameter values. If all the validation checks pass, and sufficient gas is supplied, then the contract
and its initialisation parameters get stored at each node in the network. A deployed contract is
given an address that is computed using the sender’s address. The address uniquely identifies a
contract and its library, for those who might want to use them.

m2

m5

m6

Contract C

Contract D
Contract E

Account YAccount Z

m1

m3

m4

Account X

C.trAcc X

Acc Y

E.tr

D.tr

C.tr′

Acc Z
m1 m2

m3

m4

m5

m6

Contract execution. Once a contract is deployed on the
network, an end user can invoke the contract’s transitions
by issuing a transaction that specifies (1) the address of
the contract, (2) the name of the transition to be invoked,
(3) actual parameters to be passed to the transition, (4) the
amount of funds to be transferred to the contract, and
(5) gas to be paid.

A transition invocation may trigger a chain of contract
calls as shown in the figure on the right (top). In case of a
multi-contract transaction (i.e., when a contract interacts

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

185:14 Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit Kumar, Anton Trunov, and Ken Chan Guan Hao

Expression typing Γ ⊢ e : t

Γ ⊢ val v : valType v

∀j, Γ ⊢ ij : tj
builtInType tj

blt = tj → tres

Γ ⊢ builtin blt i j : tres

∀j, Γ ⊢ ij : tj
Γ ⊢ i : tj → tres

Γ ⊢ app i ij : tres

∀ij , Γ ⊢ ij : tj
storableType tj

Γ ⊢ message (str j 7→ ij) : msg

Statement sequence typing Γe ; Γσ ; Γγ ⊢ s

Γγ ⊢ i2 : t Γe , i1 : t; Γσ ; Γγ ⊢ sj

Γe ; Γσ ; Γγ ⊢ i1 ← &i2; sj

∀k, Γe ⊢ ik : tk Γσ ⊢ i2 : map tk tv
Γe , i1 : option tv ; Γσ ; Γγ ⊢ sj

Γe ; Γσ ; Γγ ⊢ i1 ← i2 [ik]; sj

Γe ⊢ e : t
Γe , i : t; Γσ ; Γγ ⊢ sj

Γe ; Γσ ; Γγ ⊢ i = e; sj

Transition and contract typing Γe ; Γσ ; Γγ ⊢ T Γγ ⊢ C

∀j, storableType tj Γe , ij : tj ; Γσ ; Γγ ⊢ s

Γe ; Γσ ; Γγ ⊢ ⟨iT , ij : tj , s⟩

∅ ⊢ L⇝ Γlib ∀p, storableType tp Γe = Γlib, ip : tp ∀f , Γe ⊢ ef : tf
∀f , storableType tf Γσ = if : tf ∀j, Γe ; Γσ ; Γγ ⊢ Tj

Γγ ⊢ ⟨ic , L, ip : tp, if : tf = ef , Tj ⟩

Fig. 7. Selected typing rules.

with other contracts), the emitted messages are sequentialised by following a breadth-first traversal
of the transaction communication graph (figure bottom). The messages are then executed in
sequence.9 The combined output of the set of messages resulting from a transaction is committed
to the blockchain atomically, in the sense that nothing is committed unless all messages succeed. If
one message completes and the next one runs out of gas, the entire transaction is rolled back.
Even though the programming component of Scilla does not include effectful recursion (or

loops), in the presence of storable code (contracts), such a recursion can be implemented by means
of sending messages by a contract to itself, or via circular communication with other contracts. As
this kind of interaction in general cannot be detected locally without disallowing many common
scenarios, we have chosen to control it with the fixed size of a transaction’s message chain. If the
chain length limit is reached, the whole transaction rolls back.

4 TYPE SYSTEM AND BASIC CONTRACT VALIDATION

Contracts available on blockchain come from different sources, and both contract developers and
clients should be able to guarantee basic safety properties of the code to be executed in a transaction.
Scilla comes with a simple type system, mostly inherited from System F, allowing blockchain users
to validate a contract before it is deployed and used. Selected typing rules are given in Fig. 7 with Γ

ranging over standard typing contexts. Values are typed via the meta-function valType, familiar
from Fig. 6; builtInType tj

blt takes not only the built-in, but also the vector tj of the inferred

argument types, in order to perform the elaboration in the presence of built-in polymorphism.
Statements are typed in sequences (Fig. 7, middle), and the transitions are validated with the
signatures of the library functions (Γlib), contract parameters and fields in the typing context (Fig. 7,
bottom), altogether constituting to checking contract well-formedness Γγ ⊢ C.
Both messages and contract state must be possible to serialise, in order to store them on a

blockchain. Combining first-class functions and łstorabilityž in a type-safe way is known to be
difficult (Leifer et al. 2003), as these two features put together make it possible to, e.g., capture a part
of context information within a closure and send it in a message. To circumvent this issue, Scilla’s
type system uses the predicate storableType, whose definition (elided for brevity) outlaws any types
having a function or a type abstraction as its component. It is used in Fig. 7 for validating contracts
and messages. This check is sufficient to guarantee statically that no non-łstorablež value (e.g., a
function) would flow to a message or a field. The type system ensures the absence of run-time
errors in well-typed contracts, except for the following failure classes:

9Breadth-first was chosen over depth-first because it provides better fairness guarantees for sequential message processing.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

Safer Smart Contract Programming with Scilla 185:15

Definition 4.1 (Expected failure). We say that a Scilla expression execution eval e ρ д or a
statement sequence execution (foldLM seval ⟨ρ,σ , β ,γ , ι, [], []⟩ s д), for the corresponding input
environment/configuration and an amount д of gas, results in an expected failure is it fails due to
either (i) non-exhaustive pattern matching, (ii) Out-of-Gas failure, or (iii) integer overflow failure.

Our type soundness argument is worth mentioning. As the operational semantics of Scilla
(Fig. 5) is in big-step style, it comes with the explicit notion of a failure (via EvalRes monad),
allowing one to distinguish between run-time errors and non-termination and formulate the type
safety result (Harper 2012, Section 7.3) (i.e., well-typed contracts don’t go wrong, but can fail
with an expected failure). But how would one establish this result for a big-step semantics (as the
łprogress-and-preservationž approach (Wright and Felleisen 1994) does not apply in this case)?

The problem of conducting such a proof has been explored before (Amin and Rompf 2017; Owens
et al. 2016), and the solution is to instrument the big-step semantics with łexecution fuelž, which is
then used as an inductive argument for proving type soundness (Siek 2012). Luckily for us, Scilla
semantics, when made gas-aware (Sec. 3.3), gets the desired fuel instrumentation, so it suffices
to prove that for a well-typed expression e and any amount of gas д, the (non-CPS) evaluation
of E⟦v⟧ ρ д can only fully reduce to Success v, or result in an expected failure. The proof of this
statement follows the approach, described by Siek (2013), in the same way as it has been used
for establishing type soundness with definitional (big-step) interpreters in prior work (Amin and
Rompf 2017). The type soundness wrt. the CPS evaluator (Sec. 3.4) follows from the fact that
CPS-transformation is semantics-preserving (Danvy and Filinski 1992).

We conclude this section with the two important corollaries of Scilla type soundness, reflecting
on the guarantees the type system provides wrt. contract initialisation and handling messages. Both
of them use an auxiliary definition toTypeEnv ρ, which returns a typing context Γ by applying
valType component-wise to values in all entries of ρ.

Proposition 4.2 (Initialisation type soundness). If Γγ ⊢ ⟨ic , L, ip : tp , if : tf = ef , Tj ⟩, and

[iq 7→ vq] is such that toTypeEnv [iq 7→ vq] = ip : tp , then for any β and д, the execution of

initContract ⟨iC , L, ip : tp , F , T ⟩ [iq 7→ vq] β д,

• either results in ⟨ρ,σinit, β⟩, such that toTypeEnv ρ = ip : tp and toTypeEnv σinit = if : tf , or
• terminates with an expected failure.

Proposition 4.3 (Type soundness formessage handling). If Γγ ⊢ ⟨iC , L, ip : tp , if : tf = ef , Tj ⟩,

and ⟨ρC ,σC , βC ⟩ γ are such that toTypeEnv ρC = ip : tp and toTypeEnv σC = if : tf , then for any

values β and д, the execution of handleMsg ⟨iC , L, ip : tp , F , T ⟩ ⟨ρC ,σC , βC ⟩ γ ρm д

• either results in ⟨ρC ,σ
′
C , β

′
C ,γ , ι

′
, µ ′, ε ′⟩, such that toTypeEnv σ ′C = if : tf , β

′
C ≥ 0,

• halts due to exception raised at any line of handleMsg, except for the one executing seval, or
• terminates with an expected failure.

5 SUPPORT FOR LIGHTWEIGHT VERIFICATION

The type safety results enabled by Propositions 4.2 and 4.3 rule out many classes of run-time bugs,
yet leave a possibility for a contract to fail with, e.g., non-exhaustive pattern matching or running
out of gas. To provide even stronger static safety guarantees, without elaborating the type system
(as complex types might harm the adoption), but by means of lightweight (i.e., fully automated)
verification, we have built an extensible framework of pluggable staged checkers (Dietl et al. 2011),
allowing third-party users to develop their own static analyses. As an instance of the framework,
we developed a pattern-matching exhaustiveness checker, following the standard algorithm for
ML (Sestoft 1996). Other simple checkers were contributed by community members.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

185:16 Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit Kumar, Anton Trunov, and Ken Chan Guan Hao

Φ ⊢ e1 ⇝ ⟨ie1 ; s1;д1 ⟩ Φ, i : ⟨ie1 ; s1;д1 ⟩ ⊢ e2 ⇝ ⟨ie2 ; s2;д2 ⟩

д ≜ if ie1 = [] then д1 + д2 else 1 + д2

Φ ⊢ let i = e1 in e2 ⇝ ⟨[]; s2;д ⟩

Φ ⊢ ei ⇝ ⟨iei ; si ;дi ⟩

Φ ⊢ match i pat ⇒ ei ⇝ maxAdd(⟨iei ; si ;дi ⟩)

Φ, i : atom ⊢ e⇝ ⟨ij ; s ;д ⟩

Φ ⊢ fun (i : t) ⇒ e⇝ ⟨i, ij ; s ;д ⟩

Φ ⊢ i⇝ ϕ ∀j, Φ ⊢ ij ⇝ ϕ j ϕ′ = applySig(i, ij , ϕ, ϕ j)

Φ ⊢ i ij ⇝ ϕ′

applySig(i, ij , ϕ, ϕ j) =

{

⟨[], sapp i ij , gapp i ij ⟩ if ϕ = atom

⟨[], [(size ϕ j)/ij]s, [(gas ϕ j)/ij]д ⟩ if ϕ = ⟨ij ; s ;д ⟩

Fig. 9. Selected rules of the resource analysis: let-binding, branching, function definition, and application.

In the remainder of the section, we briefly describe two static analyses for Scilla that we have
developed for automated reasoning about domain-specific contract properties.

5.1 Compositional Gas Usage Analysis

The first domain-specific instance of the checker framework is the resource analyser, which
computes gas usage of a transition as a polynomial of the size of its parameters and contract fields.

contract HelloWorld ()

field welcome_msg : String = ""

transition SetHello (h : String) (*...*)

transition SayHello ()

r← welcome_msg;

e = {_eventname: "Hello"; msg: r};

event e

end

Consider the contract HelloWorld on the right. The cost
of executing SayHello can be summarised as the polyno-
mial a + b, where a is the size of the string welcome_msg

(taken as cost of loading it from the contract state) and b
is the cost of creating an event with two strings: "Hello"
of constant length and statically unknown welcome_msg.
For a statement sequence, the total gas cost is a sum over their individual gas use polynomials (GUP).
In the absence of loops and general recursion, worst-case resource usage analysis in Scilla becomes
tractable and principled, and does not require state-of-the art techniques, employed, e.g., in resource
analysis for OCaml (Hoffmann et al. 2017). Intuitively, a linear (or higher-degree polynomial) cost
may only arise from using folds or loading/storing a collection in a contract state.

(base values) br ::= var

(size abstraction) sr ::= base br | len sr | elm sr |

sapp i sr | poly(sr) |

foldacc i sr | ⊤ | . . .

(gas use polynomial) gr ::= size sr | gapp i gr | poly(gr)

(signature) ϕ ::= atom | ⟨i; sr ; poly(gr)⟩

(sign. environment) Φ ::= ∅ | Φ, i : ϕ

Fig. 8. Resource analysis domain

The gas usage of a higher-order function (e.g.,
list_map from Fig. 4) may depend on the gas usage
of its functional argument, as well as on the size of
the result value it returns. We capture this by means
of size/gas signatures ϕ, ascribed to expressions, in-
spired by the demand analysis of Glasgow Haskell
Compiler, GHC (Sergey et al. 2014). A signature ϕ
of an expression (Fig. 8) is either atom (indicating
an identifier that binds a statically unknown value), or a triple consisting of a parameter vector (for
functions), a size abstraction sr , and a gas use polynomial poly(gr).

Size abstractions provide a way to express the size of an expression’s result in terms of sizes of
values, bound by its free variables and their datatype-specific components. For example, elm(X)
refers to the elements of a container, i.e., a list or a map. Similarly, len(X) refers to the length of a
map or a list. In the presence of higher-orderness, gas usage of an expression may depend on the
size of a function application result (in addition to its gas usage), which is not known at the moment
of the analysis (think, e.g., a result of applying a parameter function f within list_map). To account
for this, size abstraction and GUPs come with terms to express the size/complexity of an application,
similar to GHC’s call demands: sapp and gapp, correspondingly. The first argument of both is a
function to be called, the second is an argument vector, with elements of the corresponding kind.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

Safer Smart Contract Programming with Scilla 185:17

Analysing folds. The reason why resource analysis in Scilla is not entirely trivial is the presence
of folds (Fig. 4), which are the modicum of bounded iteration. To tackle them soundly, the resource
analyser domain features a special size abstraction for application of foldsÐfoldacc (Fig. 8), capturing
the resulting size of the accumulator of a fold operation (over natural numbers or lists). Specifically,
in foldacc i sr , i is a reference to the function to be applied iteratively (the łfoldeež), and sr are
the parameters of the fold parameters (including the initial value of the accumulator). When fully
applied and processed, this size abstraction expresses the final size of the accumulator of a fold
operation over a linear structure, such as a natural number or a list, in terms of the structure’s size
(e.g., list’s length) and the initial value of the accumulator. As common in algorithms with iteration,
this requires finding a closed-form solution for a recurrence, arising from the way the accumulator
is threaded at each łstepž of a fold. At the moment, we only solve constant and first-order linear
recurrences (i.e., of the form f (n + 1) = f (n) + const) to determine the size of the accumulator
in a closed-form solution. For other derived recurrences, the analyser returns the top element ⊤,
indicating the failure to analyse the gas consumption.

Analysis rules. The analysis for expressions is phrased as an inference system for a judgement
Φ ⊢ e ⇝ ϕ, which reads as "in the analysis environment Φ, e has the signature ϕ".10 Some
representative rules of the analysis are shown in Fig. 9. For instance, the resource consumption of a

function fun (i : t) ⇒ e is represented by a signature ⟨i, ij ; s;д⟩, derived from analysing its body
and parameterised by i. This signature is łunleashedž when the function is applied to an argument,
using the auxiliary function applySig. For the primitive commands and statements, the analysis uses
cost assignments of the evaluator (Tab. 1). In the analysis rule for pattern matching, the function
maxAdd takes a list of signatures and takes a sum, separately, of the size abstractions and gas use
polynomials with the exception that if a polynomial term is present in both the operands of the
sum, the maximum of the coefficients is taken, rather than adding them up.
The derived signature for list_map (Fig. 4), with the size component omitted, is as follows:

Parameter list: [f, l]

Gas consumption: 5(a) + 1(a)(b) + 11

Legend: a: Length of: l; b: Cost of calling f on (Element of: l)

On soundness, completeness, and the virtues of the analyser. The resource analysis is compositional
and, hence, is linear in the size of the contract and external libraries it uses (so far we do not cache
the analysis results, but this is not difficult to implement). Thanks to the design of Scilla, in which
state-manipulating inter-contract calls are impossible by design, the resource analysis of a contract
can be done entirely in isolation, which is known to be not the case for Ethereum (Wang 2019).
Even though we did not conduct a formal soundness proof, we conjecture that our analyser is

sound (i.e., it derives a correct upper boundary on gas consumption), as (a) it employs the costs
of primitive operations directly from their gas signatures, (b) it does not under-approximate the
results of iteration, and (c) it treats the branching conservatively wrt. resource consumption using
maxAdd. The analyser is, however, incomplete and does not derive the tightest possible resource
bound. The main source of incompleteness is the analyser’s inability to solve non-linear recurrences,
in which case it returns ⊤. As our experience demonstrates (Sec. 6.1) non-trivial nested loops in
contracts are uncommon, and in the current state of the implementation, we are able to analyse all
list functions currently being used in contracts developed in-house and the community, except for
the library list_sort function, which is non-linear in nature. In the future, we are planning to rely
on specialised tools for solving recurrences for this purpose (Albert et al. 2008).

10We omit the analysis description for statements, which is straightforward.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

185:18 Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit Kumar, Anton Trunov, and Ken Chan Guan Hao

Contrary to the common perception that the main virtue of a sound and complete gas analyser
for smart contracts is to predict dynamic gas consumption (Marescotti et al. 2018; Wang 2019), we
believe the main benefit of such an analysis is the possibility to detect gas inefficiency patterns
prior to contract deployment (Chen et al. 2017). With this regard, the ⊤ result of our analysis is
still informative, as it indicates worse-than-linear gas consumption, which is usually a design flaw.

5.2 Cash-Flow Analysis

The second major application of the checker framework is the cash-flow analysis. Each deployed
contract constitutes an independent account on the network, and the contract’s transitions can
access the current balance of its account through the implicitly declared balance field. However, a
contract such as the Crowdfunding needs to keep track not only of its total balance, but also how
much money each of the backers has contributed to the crowdfunding campaign.

τ ::= Money | NotMoney | Map τ | t τ | ⊤ | ⊥
t ::= Option | Pair | List | . . .

(maps) Map τ ⊑ Map τ ′ iff τ ⊑ τ ′

(algebraic types) t τ ⊑ t′ τ ′ iff t = t′ and τi ⊑ τ
′
i for all i

(bottom) ⊥ ⊑ τ for all τ

(top) τ ⊑ ⊤ for all τ

Fig. 10. Tags and partial ordering on them.

The cash-flow analysis attempts to deter-
mine which parts of the contract’s state (i.e.,
its fields) represent an amount of money, in or-
der to ensure that money is being accounted for
in a consistent way. To do so we apply standard
techniques of abstract interpretation (Cousot
and Cousot 1977), so each field, parameter, local
variable, and subexpression in the contract is
given a tag indicating if and how it is used wrt. representing money.

Lattice of tags. The tags (ranged over by τ) mimic the type system and are summarised in
Fig. 10. Money indicates that an expression represents money; NotMoney indicates that an
expression certainly is not money;Map τ is for maps whose co-domain has tag τ ;11 t τ indicates
that an expression is of the algebraic type t, where the type parameters of t are tagged with τ .12

The meanings of ⊥ is nothing is known about the component, and ⊤ represents an apparent
inconsistency.
The collection of all contract parameters, fields, transition parameters and local parameters,

along with their respective tags, form the elements of a lattice with the ordering described in Fig. 10
applied pointwise to each typed AST node. The lattice is finite, since the depth of a combination of
Map and t is finite for well-typed contracts. The complexity of cash-flow analyser’s procedure is
determined by the height of the abstract domain lattice and, hence, is quadratic in the size of the
program at worst.

Transfer function. The main transfer function (Muchnick 1997)⇝ is defined on the lattice of pairs
Ψ, s, where an environment Ψ maps fields and variables to their current tags and s is a sequence
of statements that are being annotated with tags (Fig. 11). It analyses the usage of variables, and
generating new tags representing the least upper bound (lub, ⊔) of their current tags and their
usage. This constitutes a monotone function within the lattice, and repeated applications of the
function (starting from the element where all variables are tagged with ⊥) are thus guaranteed to
reach a fixpoint.

An environment Ψ is threaded through a list of statements, which is analysed backwards in order
to analyse usage before declarations (Fig. 11, top left). Once a variable declaration i1 is reached
(Fig. 11, top middle), it is tagged with the current tag ⟨i1,τ ⟩, and the variable is removed from the

11We are unaware of a use case where a map domain represents money.
12We make exceptions for the types nat and bool (as well as user-defined types isomorphic to bool), which in Scilla are

algebraic types, but which are treated as base types in the cashflow analysis. Values of those types are tagged with Money

or NotMoney depending on the usage.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

Safer Smart Contract Programming with Scilla 185:19

Ψ, s⇝ Ψ
′′
, s′

Ψ
′′
, sj ⇝ Ψ

′
, s′j

Ψ, sj ; s⇝ Ψ
′
, s′j ; s

′

Ψ(i1) = τ
′
1 Ψ(i2) = τ

′
2 τ = τ ′1 ⊔ τ

′
2

Ψ
′′
= remove(i1, Ψ) Ψ

′
= replace(i2, τ , Ψ

′′)

Ψ, ⟨i1, τ1 ⟩ ← i2 ⇝ Ψ
′
, ⟨i1, τ ⟩ ← i2

Ψ(i) = τ ′′ Ψ
′′
= remove(i, Ψ)

Ψ
′′ ⊢ e ↓ τ ′′⇝ Ψ

′
, ⟨e′, τ ′⟩

Ψ, ⟨i, τ ⟩ = e⇝ Ψ
′
, ⟨i, τ ′⟩ = e′

Ψ(i) = τ τ ′ = τe ⊔ τ
Ψ
′
= replace(i, τ ′, Ψ)

Ψ ⊢ var i ↓ τe ⇝ Ψ
′
, ⟨var i, τ ′⟩

ψ = τe ;Ψ(i) ψ ′ = ψ ⊔ sigs(blt)

ψ ′′ =
/

ψ ′ τ ′e ; τ
′
= ψ ′′ Ψ

′
= replace(i, τ ′, Ψ)

Ψ ⊢ builtin blt i ↓ τe ⇝ Ψ
′
, ⟨builtin blt i, τ ′e ⟩

stra = łamountž Ψ(ia) = τ
′
a τa = Money ⊔ τ ′a Ψa = replace(ia, τa, Ψ)

strr = łrecipientž Ψa (ir) = τ
′
r τr = NotMoney ⊔ τ ′r Ψ

′
= replace(ir , τr , Ψa) τ ′e = τe ⊔ NotMoney

Ψ ⊢ message (str 7→ i) ↓ τe ⇝ Ψ
′
, ⟨message (str 7→ i), τ ′e ⟩

Fig. 11. Selected rules for the cash-flow transfer function.

environment Ψ′. The per-contract field environment is initialised with the implicit field balance,
mapped toMoney, the implicit field this_address, mapped to NotMoney, and with the contract
parameters and fields, mapped to ⊥. The local environment for a transition is initialised with the
message fields amount and sender, mapped toMoney and NotMoney respectively.

In our backwards analysis, expressions are analysed top-down (Ψ ⊢ e ↓ τ ⇝ Ψ
′
, ⟨e,τ ′⟩) with the

use of an expected tag τ , which represents a lower tag bound that the expression must have. This
bound is derived from the context in which the expression is used in a statement (cf. Fig. 11, top-
right). The initial sources of theMoney tag are the balance field, and the amount fields of incoming
and outgoing messages. Whenever these fields are read from or assigned to, the expressions or
variables used as the target of the read or the source of the assignment are known to represent
money. The initial sources of the NotMoney tag are the current block number of the blockchain
(accessed using BLOCKNUMBER), the this_address field, and the sender/recipient message fields.

When variables are used, their usage and their current tags are analysed to determine if their tags
need to be changed. For instance, if the variable v with tagMoney is used as the right-hand side

of a map update statementm [k] := v , thenm must have the tag which is greater than or equal to
Map Money. Similarly, if the variable r with tag Option NotMoney is used as the left-hand side

of a lookup statement r ←m [k], thenm must have a tag that is not smaller thanMap NotMoney.
Arithmetic built-in functions such as add and mul have multiple consistent usages. For add we

require both of the arguments and the result to have the same tag, since the addition of Money

and NotMoney is inconsistent. Conversely, applying mul toMoney and NotMoney (in any order)
is consistent and produces Money, whereas applying mul to Money and Money is considered
inconsistent. We analyse calls to builtin functions by generating a signatureψ (an expected return
tag followed by the list of argument tags) based on the current tags at the call site (Fig. 11, middle-
right). We then take the pointwise least upper bound of that signature and all possible signatures
of the function being called. The greatest lower bound of the resulting set of signatures constitutes
the new tags for the variables used at the call site. If an inconsistency is found in the usage, the
variables in question are tagged with Top (the lub of inconsistent tags).

Field/Param Tag

owner NotMoney

max_block NotMoney

goal Money

backers Map Money

funded NotMoney

Example. Running the analysis on the crowdfunding contract (Fig. 2)
results in the fields of the contract being tagged as listed in the table on
the right. Notice that the goal field is being tagged withMoney. The goal
field represents the amount of money the owner of the contract is trying
to raise, rather than an amount of money owned by the contract. However,
the field is still tagged with Money, since its value is regularly compared
to the value of the balance field.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

185:20 Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit Kumar, Anton Trunov, and Ken Chan Guan Hao

Library functions. Since library functions are pure, each library function defines a relationship
between the cashflow tags of actual parameters and the cashflow tags of the result of the function.
For built-in functions this relationship is represented using signatures, but establishing a set of
consistent signatures for a user-defined library function is non-trivial in general. We therefore
conservatively limit the cashflow analysis to the statement part of Scilla, and the simple expressions
that are allowed to occur as part of statements.

When applied to contracts used in practice, we observe that this limitation appears to have little
adverse impact on the quality of the analysis. The reason for this is that the cashflow relationship
between parameters and results of a library function is often trivial in practice, and can thus be
determined using only the information from how the parameters and values are used outside of
the library function, without a deep analysis of the function body.

Non-native tokens. Asmentioned earlier, the initial source of Money tags are the balance contract
field and the amount fields of incoming/outgoing messages. However, a common use case for smart
contracts is to facilitate the exchange of non-native tokens, i.e., tokens that can be used for payment,
and thus carry value on their own, but which differ from the virtual currency used by the network
that the contract is deployed onto. These non-native tokens are not discovered by the analysis as
they are unrelated to and thus never mix with the native tokens in the balance and amount fields.
The cashflow analysis may be given hints by the user as to which additional fields are used to

represent non-native tokens. If a hint is supplied to the analysis, the appropriate field is initially
marked asMoney (orMap Money, as appropriate), after which the analysis proceeds as usual.

Future applications. We believe it is reasonable to assume that a contract’s money fields must be
used consistently as money, and not be mixed with non-money values, in the spirit of type systems
with units of measure (Kennedy 1997). To that end, our cashflow analysis is useful to the contract
programmer, in that it is able to flag any inconsistent use of money fields.13 Additionally, we
envision an extension to Scilla where a money field can be declared to have a specific relationship
with the current balance of the contract.

6 IMPLEMENTATION, EVALUATION, AND ADOPTION

The entire Scilla infrastructure14 to date is implemented in about 10 kLOC of OCaml with Jane
Street extensions to support monadic do-notation (Minsky 2016), and 1 kLOC of C++ used for
cryptographic primitives. The interpreter interacts with the underlying blockchain layer (imple-
mented entirely in C++) through message passing. Miners that use the standard client application
are mandated to run the type-checker (Sec. 4) upon contract deployment, and are encouraged (but
not required) to run the analyses described in Sec. 5. The resource and cash-flow analyses are
also intended to be used by the contract developer to validate their code with the intent to avoid
common mistakes before deployment.

6.1 Our Experience

To evaluate the viability of the language proposal before deploying it to the protocol, we imple-
mented the standard library for manipulating with basic data types (700 LOC of Scilla), and a
number of the most commonly used contracts, ported from Ethereum to Scilla.

The statistics for some basic contracts is collected in Tab. 2. It includes widespread applications
such as ERC20 and ERC721 (Shirley 2018) tokens, both following the corresponding community

13In fact, we have already discovered bugs this way. When the crowdfunding contract was rewritten to use events to signal

errors rather than through messages, a money-carrying message was incorrectly changed to be an event. The cashflow

analysis suddenly tagged the backers field withMap ⊥ rather than Map Money, causing the bug to be discovered.
14Scilla is available open-source on GitHub: https://github.com/Zilliqa/scilla.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

https://github.com/Zilliqa/scilla

Safer Smart Contract Programming with Scilla 185:21

Tab. 2. Statistics for implemented basic contracts

Contract LOC #Lib #Trans Asympt. GU $-Flow

HelloWorld 31 3 2 O(|string|) ✓

Crowdfunding 127 13 3 O(|map|) ✓

Auction 140 11 3 O(|map|) ✓

ERC20 158 2 6 O(1) ✓
∗

ERC721 270 15 6 O(|map|) ✓⊥

Wallet 363 28 9 O(|map| × |list|) ✓

Bookstore 123 6 3 O(|string| + |map|) ✓

HashGame 209 16 3 O(1) ✓

Schnorr 71 2 3 O(|bystr|) ✓

standards, as well as a version of an auction (Auction), multi-party wallet (Wallet), multi-player
game (HashGame), and a service contract for digital signing (Schnorr).15 The table reports on
the contract sizes (in LOC), numbers of library functions each of them defines (#Lib), number of
transitions (#Trans), and worst-case asymptotic transition complexity by the gas usage analyser
(Sec. 5.1), stated in terms of types ascribed to fields whose size makes the principal contribution to
gas usage. The last column tells whether the results of the cash-flow analyser (Sec. 5.2) matched the
developer’s intuition wrt. assigning money tags. For all contracts, except for ERC20 and ERC721,
the analysis correctly derived the dichotomy (✓) for money/not money-storing fields.

In the two mentioned contracts, fields that store amounts of non-native tokens were marked with
⊥, as they have no data flow involving balance/amount components of the contract and messages.
That is, the analysis had no łseedž to start assigning the money tags. In the case of the ERC20
contract, once the cashflow analyser was provided with suitable hints regarding which fields should
be assigned money tags, the analysis proceeded to mark other fields appropriately as well, thus
giving the expected outcome. In the case of the ERC721 contract, however, no extra information
was gained even with hints. The reason for this is that ERC721 defines a non-fungible type of token,
i.e., a type of token where individual tokens are not interchangeable, and which may therefore
carry different values. In contrast, the cashflow analyser assumes that all money is fungible.16

6.2 Performance Evaluation and Comparison to EVM

We evaluated Scilla implementation with the goal of answering the following research questions:

(1) What is Scilla’s performance on common contracts and what are the main bottlenecks?
(2) How does the performance of Scilla evaluator compare to EVM on similar contracts?
(3) What are the sizes of similar contracts implemented in Scilla, Solidity, and EVM bytecode?

Sincewe prioritised tractability of the language definition and the contracts implemented in it over
performance, it was not our goal to beat EVM, but merely to show that the performance/contract
sizes are comparable with those of the highly optimised state-of-the-art blockchain platform.
Furthermore, since the main performance bottlenecks in blockchain protocols are the speed of
mining transaction and communication costs (taking up to a few seconds), one could afford contract
running times that are no worse than the time for creating a new block.

15According to https://etherscan.io/tokens, roughly 16% of active smart contracts on Ethereum are ERC20. According to

https://dappradar.com/charts, games, gambling, and collectibles (ERC721) are the most used contracts on Ethereum.
16A fungible token type is similar to traditional currencies where coins are indistinguishable and thus are freely interchange-

able (if they have the same denomination). Conversely, a non-fungible token type is more similar to collector’s items, e.g.,

paintings, where the tokens are distinguishable, and may therefore not be interchangeable.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

https://etherscan.io/tokens
https://dappradar.com/charts

185:22 Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit Kumar, Anton Trunov, and Ken Chan Guan Hao

Tab. 3. Breakdown of contract run-times (in ms): initialisation, execution, serialisation, and output.

init exec serialise write

Transition/State size 10k 100k 500k 10k 100k 500k 10k 100k 500k 10k 100k 500k
ft-transfer 67 709 4,208 0.05 0.05 0.07 25 501 2,506 14 244 1,976
nft-setApproveForAll 239 3,011 15,382 1.92 39 206 41 568 3,546 23 242 1,719
auc-bid 61 665 3,480 0.83 0.96 0.10 23 456 1,860 17 221 1,515
cfd-pledge 68 723 3,705 1.96 42 207 23 500 2,057 20 216 1,368

0

10

20

init exec serialize write

size: ft-tr nft-safa auc-bid cfd-plg

T
im

e
(s

)

10

20

init exec serialize write

(a) Relative time breakdown

T
im

e
(m

s)

500

1,000

1,500

ft-10 ft-50nft-10 nft-50auc-10 auc-50 cfd-50cfd-10

(b) Scilla/EVM execution times
Si

ze
 (

b
yt

es
)

ft nft auc cfd

5k

10k

(c) Code size comparison

Fig. 12. Runtime and size statistics on some representative smart contracts.

For our evaluation we have chosen the most common kinds of contracts used on Ethereum:
ERC20 (ft), ERC721 (nft), auction (auc) and crowdfunding (cfd). Performance experiments were
conducted on a commodity Intel Core i5 machine with 8GB RAM.17

To answer question (1), we have evaluated the interpreter performance on the most expensive
transitions of the chosen contracts (e.g., ERC20’s transfer), with the size of the largest affected
contract state component (e.g., a map field) ranging from 10k to 500k entries.18 The results are shown
in Tab. 3 and Fig. 12a. It is clear that the evaluator’s performance overhead is negligible (less than
1%) compared to the time taken by input/output of the contract state: reading from blockchain
(init), serialising and writing it backÐthose machineries operate with JSON representation of state
and their performance deteriorates linearly with the state size. This issue is orthogonal to our study
of the language design presented in this paper, and in Sec. 7, we discuss possible ways to address
it in the future. That said, even with the suboptimal IO implementation, in most of the cases the
observed transaction times are under 10s, which is acceptable for blockchain computations.
The implementation of Scilla is agnostic with regard to the underlying blockchain protocol,

and at the moment all interaction is done by passing state snapshots in JSON. Thus, making an
apples-to-apples comparison of Scilla/EVM performance is difficult, as EVM is an integral part of
the Ethereum protocol, and can access the entire blockchain state in a RAM-like manner. This leads
to more slow start-up time for EVM, but nearly constant-time access for contracts with large state,
whereas Scilla input-output overhead grows linearly. Fig. 12b shows a comparison of run-times
(from the cold start) of Scilla and EVM on the same four contracts with 10k and 50k state entries
(first/second four groups). In most of the cases, Scilla’s performance is better, but EVM shows
superior results, due to more efficient IO, when the state grows beyond 50k entries. The state of nft
is larger than the projected 10/50k, as it uses nested maps, while we only count łtop-levelž entries.

17The artefact containing the benchmarks is available on GitHub: https://github.com/ilyasergey/scilla-benchmarks.
18The largest Ethereum contract to date is ERC20 with 600k entries. Most of deployed contracts have less than 50k entries.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

https://github.com/ilyasergey/scilla-benchmarks

Safer Smart Contract Programming with Scilla 185:23

Contract sizes are important, as the miners need to store them locally, increasing the memory
overhead of the protocol. Fig. 12c addresses question (3), showing the size (in bytes) of Scilla
contracts, which, at worst, is only less than 2.5 times bigger than that of Solidity (which is much
more expressive) and of EVM (which is compressed). As the number of deployed contract libraries
on the blockchain grows, we expect the average size of a contract to reduce due to code reuse.

6.3 Scilla in the Wild

Scilla has been incorporated into Zilliqa blockchain (Zilliqa Team 2017). Even though Scilla

has been released less than a year prior to the submission of the final version of this paper, its
industry adoption has resulted into an emerging community of developers actively contributing in
the development of libraries and template smart contracts for industry-standardised tokens and
use cases, development tools, and testing frameworks among others.

6.3.1 Contributed Libraries and Usage. Several template contracts have been developed in Scilla

by the community. Those include ERC223 and ERC777Ðsecurity-hardened variants of ERC20,
contracts for crowdsales, escrows, a faucet contract to distribute ERC20 tokens, contracts for
access control, and even the new upcoming standard ERC1404 for security tokens that will allow
ownership and transfer of traditional financial assets.

Some of the most prominent decentralised applications that have been written in Scilla and are
live include a blockchain-based game that uses an nft token contract to represent in-game assets
and provides a marketplace to trade them; a name registry contract that allows users to register
a human-readable name (e.g., myname.zil) for their account address (e.g., 0x1b133c67ae12...)
and use the human-readable name to receive payments; a hash time-locked contract to enable
cross-chain atomic swaps; and a contract that analyzes tweets and rewards users who tweet a
certain text. The addresses of those contracts are provided in Sec. A.1.
Other development tools that the community is involved in include the support for language

server protocol (LSP 2018), a web-based IDE,19 and a Scilla plugin for Visual Studio Code editor.20

6.3.2 Finding Bugs in Community Contracts. We have used the analysers from Sec. 5.1 and Sec. 5.2
on sixteen community-written contracts (cf. Sec. A.2) and identified the following inefficiency
patterns/bugs: (a) copying of a map from a field to read a single entry, (b) copying of a nested map
to check if the key corresponding to it exists, (c) creating a copy of a container and not referencing
it later, (d) money-receiving transitions failing to explicitly accept funds or accepting funds more
than once. The bugs from categories (a)ś(c) were discovered using the resource analyser, while (d)
has been detected via the cash-flow analysis.

7 DISCUSSION

This manuscript has described Scilla v1.0. Indeed, we have foreseen some future changes in the
language design. Scilla comes with a mechanism of versioning to cater for this evolution, but
presentation of it is outside of the scope of this paper.

Notes on the current design. The initial version of Scilla by Sergey et al. (2018a) featured explicit
continuations for non-atomic calls to other contracts’ transitions, in order to mimic Solidity-style
programming. Having implemented contracts from Tab. 2, we observed that all interaction between
contracts can be structured in a tail-call style, rendering in-transition external calls needless.21 This
allowed us to simplify the communication aspect wrt. to the initial proposal.

19https://savant-ide.zilliqa.com/
20https://marketplace.visualstudio.com/items?itemName=as1ndu.scilla
21This is consistent with the security recommendation to favour pull-style withdrawal in Solidity contracts.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

https://savant-ide.zilliqa.com/
https://marketplace.visualstudio.com/items?itemName=as1ndu.scilla

185:24 Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit Kumar, Anton Trunov, and Ken Chan Guan Hao

The initial design only allowed for simple imperative interactions with the contract state (read-
ing/writing fields). We had to extend this interface with map-specific statements (Fig. 1e), to provide
special support for maps which are frequently used for accounting. Had we ignored this paramount
use-case, most of the contract’s transitions would have linear (as opposed to constant) gas use, due
to the need to load/store a map for every manipulation. In contrast, with introduction of those
imperative operations, the gas cost of running contracts such as ERC20 became constant (cf. Tab. 2).
First class polymorphic functions are essential for generic programming (Lämmel and Jones

2003) or imposing restrictions on what users of higher-order functions are allowed to do with
the input of the functions they provide. This technique is crucial to ensure, e.g., the safety of
ST monad (Launchbury and Jones 1994). As an intermediate language, Scilla must allow for
implementations of expressive higher-level languages on top of it, including the support for ad-hoc
polymorphism. It is known that, e.g., Haskell-like type classes cannot, in general, be implemented
by a translation into the standard Hindley-Milner type system with prenex polymorphism (Jones
1997), hence our choice of System F as a sufficiently expressive type system for our purposes.

Input/output and interaction with the protocol. As revealed, the evaluation in Sec. 6.2, input/output
poses a significant execution overhead. As our immediate future work, we are working on imple-
menting an on-demand direct storage access, where the entire state is not passed around in files
but only necessary parts are fetched on-demand. With that in place, we expect Scilla performance
to be almost on par with that of Ethereum contracts, keeping in mind that Scilla is currently
interpreted. More concretely, we expect the non-constant (increasing with state size) serialisation
times in Tab. 3 to become independent of the state size.

Since Scilla evaluator interacts with the state via a set of monadic primitives, it should be easier
to switch the state representation, as long as it supports the same interface of I/O primitives. For
instance, flat-buffers22 can be a good alternative to the current JSON-based serialisation. Flat-buffers
will allow access to serialised data without the need for parsing/unpacking and hence leading to
better memory efficiency and execution performance of the evaluator. However, more research
needs to be done on distilling the right interface, so multiple consensus protocols could provide it,
simplifying the adoption of Scilla.

Storing contract state on the blockchain. Scilla contracts will require roughly the same persistent
storage as Ethereum contracts as the underlying storage model is the same. We however believe
that the storage scalability issues with blockchains in general cannot be fully solved at the language-
level. Instead, improvements need to be made at the protocol-level. Some of the ideas that we are
currently exploring are: (a) state shardingÐeach node will only store a part of the global state and
(b) outsourcing of persistent storage to a distributed storage provider such as IPFS.23

8 RELATED WORK

Many specialised programming languages for smart contracts were proposed recently by researchers
and industry practitioners, aiming to either improve on EVM and Solidity (Ethereum’s high-level
language), or targeting a particular blockchain platform. To date, most of those languages are
available in a form of a sparsely documented repository, a position paper, or a blog post (e.g.,
Obsidian (Coblenz 2017), Babbage (Reitwiessner 2017), Marlowe (IOHK Foundation 2019a),
Bamboo (Hirai 2018), Rholang (RChain Cooperative 2019), Sophia (ñternity Blockchain 2019),
and Ligo (Alfour 2019)), which makes it difficult to conduct a rigorous comparison. In the interest

22https://google.github.io/flatbuffers
23https://ipfs.io

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

https://google.github.io/flatbuffers
https://ipfs.io

Safer Smart Contract Programming with Scilla 185:25

of space, we only relate Scilla to proposals that come with a publicly available documentation
and, to the best of our knowledge, have been deployed on an open blockchain protocol.

Low- and intermediate-level languages. EVM’s shortcoming when it comes to tractability and
unsafe features have been recognised by the community, and several alternatives were suggested.
IELE (Rosu 2018) is a low-level virtual machine, similar in design to EVM, but prohibiting

some of its features, such as unguarded calls to other contracts and the delegatecall instruction.
Yul (Ethereum Foundation 2018f) is an intermediate language developed for interoperability
between high-level contract languages that build on Ethereum and several versions of EVM.
Pact (Popejoy 2017) is LISP-like intermediate language, which is optimised for the database-like
queries on the state managed by the Kadena blockchain protocol and used for communication.
Michelson is a low-level stack-based Turing-complete language by Tezos Foundation (2018a),

which, unlike EVM, is statically typed and offers high level algebraic data types, immutable func-
tional data structures such as lists, maps, lazily deserialised maps, and arbitrary precision arith-
metic. Michelson provides a typing discipline for stack operations of the form (type of stack

before) → (type of stack after) and ensures that no smart contract execution fails because
an instruction has been executed on a stack of unexpected length or contents. For instance, the
instruction DUP for duplicating the top of the stack has the type DUP :: 'a : 'A →'a : 'a : 'A.
We should note at this point that Michelson’s types are monomorphic: unlike Scilla it does not
feature polymorphic functions.24 The Michelson interpreter is a pure function that uses the state
threading technique.Michelson contracts, unlike Scilla’s, have a single entry point and take only
one parameter as the top of the initial stack containing a single pair of an input value and explicitly
passed state called storage. As its last execution step, a well-behavedMichelson contract returns a
stack with a pair consisting of a list of internal blockchain operations and an updated state. The
internal operations get queued for execution when the contract returns. Alternatively, aMichelson

contract fails if the programmer explicitly calls FAILWITH instruction or because of a run-time error
such as division by zero, gas exhaustion, etc. the type system cannot detect. To simulate Scilla’s
transitions the programmer can define the input parameter of a sum type and use a product type to
represent multiple transition parameters. The low-level nature of Michelson (compared to the
one of Scilla) makes it a more difficult target for automated analyses and lightweight verification:
to the best of our knowledge, no analogues of our gas usage (Sec. 5.1) and cash-flow (Sec. 5.2)
analyses exist forMichelson. We also believe that the transition-based (as opposed to stack-based)
execution model for multi-contract interactions make Scilla more amenable to verification of
temporal properties (Sergey et al. 2018b).

Move (Blackshear et al. 2019) is a statically typed stack-based bytecode language with a syntactic
layer providing an intermediate representation which is sufficiently high-level to write human-
readable code, yet directly translates toMove bytecode. The key feature of Move’s type system
is the ability to define custom resource types with semantics inspired by linear logic (Girard
1987): a resource can never be copied or implicitly discarded, only moved between program
storage locations. Move’s programming model assumes having a global mapping of addresses
representing the blockchain entities to assets (resources). Therefore, anyone, can change their
account by publishing new resources representing łcurrenciesž of different kinds. Linearity of
resources ensures that users cannot loose or duplicate their assets when transforming them from
one kind to another. Compared toMove, Scilla does not have a notion of a global mutable mapping
from addresses to assets. This implies that contract authors commonly have to maintain their own
local mappings of addresses to assets tailored to the purpose of the contract at hand. Handling

24The type variables in the type of the (second-class) DUP operation are merely meta-variables.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

185:26 Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit Kumar, Anton Trunov, and Ken Chan Guan Hao

those local mappings can often be simplified by using a generic escrow-like contract published
alongside with the specific contract the programmer wants to deploy (Trunov 2019).

High-level languages. Ethereum’s Solidity is the de facto high-level programming language
for smart contracts, featuring a JavaScript-like syntax. Due to its expressivity, and also constantly
changing design, it is a moving target for verification and static analysis. That said, because of its
popularity, a number of industrial-strength analysis frameworks for Solidity have been developed
recently. Vyper by Ethereum Foundation (2018e) is a Python-like language aimed to rectify some
of Solidity’s issues by removing some the łdangerousž features, such as, e.g., infinite-length loops.

Liqidity by Tezos Foundation (2018b) is an ML-style language (compiled toMichelson), similar
to Scilla in its pure fragment. Unlike Scilla, Liqidity does not make communication between
contracts explicit and allows for general recursion, making it the programmer’s duty to pass the
correct state to a callee contract and handle the result. We believe that choice to restrict effectful
inter-contract interaction to communication we made in Scilla has made it simple (if not possible)
to analyse contracts (e.g., for gas and cash-flows as in Sec. 5) in isolation. Since no similar analyses
are available for Liqidity, no direct comparison is possible.

Flint by Schrans et al. (2018) is a type-safe Solidity-like language, which can be compiled down
to EVM via Yul. Flint relies on a substructural typing discipline for addressing the issues similar
to those we outlined in Sec. 2. It uses object capabilities for avoiding DAO-like exploits, limiting the
power of a callee contract to modify the caller’s state, and also employs a special asset type Wei to
account for cash-flows (Schrans 2018). For the same purposes, Scilla uses automata-based contract
structure and a cash-flow analysis (which, unlike the asset type, allows for non-native tokens).

Low-level languages for UTXO scripting. While Scilla has been designed to work with account-
based model for blockchain state (adopted, for instance, by Ethereum), a number of languages
exist for an alternative, UTXO transaction model (Sun 2018), adopted in particular by Bitcoin and
Cardano blockchains. The most prominent languages include Bitcoin Script (Bitcoin Wiki 2017) and
Simplicity (O’Connor 2017) (for Bitcoin), and Plutus Core (IOHK Foundation 2019b) (for Cardano).
Due to the absence of explicit state, the UTXO model allows for a simpler, purely-functional design
of a language (e.g., Plutus is a strict subset of Haskell), while making it more difficult to express
stateful computations, which are needed, e.g., for persistent accounting.

9 FUTURE DIRECTIONS AND CONCLUSION

A few important features are still missing from the currently deployed version of Scilla. Our
immediate plan is to add support for recursive user-defined data types, with the corresponding
recursion principles (folds). We are also planning to develop a family of higher-level languages,
which translate down to Scilla, to support most common applications, such as token-based games.

Looking ahead, Scilla opens exciting opportunities for bringing the state-of-the art research in
PL and formal methods into the emerging area of programmable consensus protocols. In the near
future, we are interested in building a shallow embedding of Scilla into the Coq proof assistant,
allowing one to reason about safety and temporal contract properties. A further agenda is to
implement the reference evaluator for Scilla directly in a proof assistant. Finally we are going to
leverage the analyses from Sec. 5 for SMT-based verification of most common contract invariants,
their safety, and temporal properties (Sergey et al. 2018b).

The field of smart contract programming is still relatively young, but is desperately in need for
firm formal foundations, which would enable principled reasoning about programs, their analysis
and verification. We believe that our design of Scilla is a logical step towards achieving this goal.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

Safer Smart Contract Programming with Scilla 185:27

A NOTABLE SCILLA CONTRACTS

In this appendix, we provide addresses and links to some noteworthy Scilla contracts contributed
by the community members.

A.1 Contributed Contracts on ZilliqaMain-Net

The following are some representative third-party Scilla contracts, mentioned in Sec. 6.3.1 and
available on Zilliqa blockchain:

• A blockchain-based game of collectibles:
ś Game contract: zil1vxl33hrua4wsld32zk2fjm6qv3qu4tg6cw4azu
ś NFT marketplace contract: zil1w0gj7tnxk8usu68et44jfchuwh0mjc040pqd6l
• A name registry: zil1jcgu2wlx6xejqk9jw3aaankw6lsjzeunx2j0jz
• A contract for cross-chain atomic swaps: zil1j2vvhfx783kchv70heac2tp0er8772c7dw3wa4
• A contract rewarding users for tweets: zil15pv5kyhk767sgvzp0u79gjl5a48e290m409r5n

A.2 Community Contract Repositories

The contracts for analysis case studies in Sec. 6.3.2 were taken from the following repositories:

• Simple Reusable Vanilla Contracts for Scilla: https://github.com/merkaliser/scilla-vanilla
• Decentralised exchange for fungible tokens on Zilliqa: https://github.com/khelmy/zdex

ACKNOWLEDGMENTS

First and foremost we wish to thank the amazing Zilliqa team, whose involvement helped a lot
to shape up the design and implementation of Scilla, and deploy it on the main-net blockchain.
In particular, we thank Sandip Bhoir, Han Wen Chua, Sophia Fang, Deli Gong, Sheng Guang
Xiao, Yaoqi Jia, Saiba Kataruka, Edison Lim, Haichuan Liu, Antonio Nicolas Nunez, Advay Pal,
Kaustubh Shamshery, Hugh Sipiere, Bryan Tan Yao Hong, Jun Hao Tan, Ian Tan, Clark Yang, and
Noel Yoo. We are thankful to Xinshu Dong, Aquinas Hobor, Prateek Saxena, Max Kantelia, and
Juzar Motiwalla for their encouragement and support of the Scilla initiative. We feel very grateful
to the vibrant community of Zilliqa early adopters, whose feedback and technical contributions
were instrumental for adapting the initial design of Scilla to make it more development- and
verification-friendly.

We benefited a lot from the discussions on Scilla design with members of the programming
languages and verification community: Mario Alvarez, Olivier Danvy, Dominique Devriese, Sophia
Drossopoulou, Fritz Henglein, Ranjit Jhala, Neel Krishnaswami, Ben Livshits, Sukyoung Ryu, Mooly
Sagiv, Bas Spitters, and Petar Tsankov. We thank the OOPSLA 2019 PC and AEC referees for their
careful reading and many constructive suggestions on the paper and the implementation.
Finally, we thank the sponsors of the Crystal Centre at the School of Computing of National

University of Singapore that has supported Ilya Sergey’s research.

REFERENCES

ñternity Blockchain. 2019. Sophia. https://github.com/aeternity/protocol/blob/master/contracts/sophia.md.

Elvira Albert, Puri Arenas, Samir Genaim, and Germán Puebla. 2008. Automatic Inference of Upper Bounds for Recurrence

Relations in Cost Analysis. In SAS (LNCS), Vol. 5079. Springer, 221ś237.

Gabriel Alfour. 2019. Introducing LIGO: a new smart contract language for Tezos. https://medium.com/tezos/introducing-

ligo-a-new-smart-contract-language-for-tezos-233fa17f21c7.

JD Alois. 2017. Ethereum Parity Hack May Impact ETH 500,000 or $146 Million. https://www.crowdfundinsider.com/2017/

11/124200-ethereum-parity-hack-may-impact-eth-500000-146-million/.

Leonardo Alt and Christian Reitwießner. 2018. SMT-Based Verification of Solidity Smart Contracts. In ISoLA (LNCS),

Vol. 11247. Springer, 376ś388.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

https://bit.ly/2Z0JKkH
https://bit.ly/2TuatVV
https://bit.ly/2Mk78rt
https://bit.ly/2YNmOdt
https://bit.ly/2Mobxdl
https://github.com/merkaliser/scilla-vanilla
https://github.com/khelmy/zdex
https://github.com/aeternity/protocol/blob/master/contracts/sophia.md
https://medium.com/tezos/introducing-ligo-a-new-smart-contract-language-for-tezos-233fa17f21c7
https://medium.com/tezos/introducing-ligo-a-new-smart-contract-language-for-tezos-233fa17f21c7
https://www.crowdfundinsider.com/2017/11/124200-ethereum-parity-hack-may-impact-eth-500000-146-million/
https://www.crowdfundinsider.com/2017/11/124200-ethereum-parity-hack-may-impact-eth-500000-146-million/

185:28 Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit Kumar, Anton Trunov, and Ken Chan Guan Hao

Sidney Amani, Myriam Bégel, Maksym Bortin, and Mark Staples. 2018. Towards verifying Ethereum smart contract bytecode

in Isabelle/HOL. In CPP. ACM, 66ś77.

Nada Amin and Tiark Rompf. 2017. Type soundness proofs with definitional interpreters. In POPL. ACM, 666ś679.

Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. 2017. A Survey of Attacks on Ethereum Smart Contracts (SoK). In

POST (LNCS), Vol. 10204. Springer, 164ś186.

Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam, Sarah Azouvi, Patrick McCorry, Sarah Meiklejohn, and George Danezis.

2017. Consensus in the Age of Blockchains. CoRR abs/1711.03936 (2017).

Kshitij Bansal, Eric Koskinen, and Omer Tripp. 2018. Automatic Generation of Precise and Useful Commutativity Conditions.

In TACAS (LNCS), Vol. 10805. Springer, 115ś132.

Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Anitha Gollamudi, Georges Gonthier, Nadim Kobeissi,

Natalia Kulatova, Aseem Rastogi, Thomas Sibut-Pinote, Nikhil Swamy, and Santiago Zanella-Béguelin. 2016. Formal

Verification of Smart Contracts: Short Paper. In PLAS. ACM, 91ś96.

Bitcoin Wiki. 2017. Bitcoin Script. https://en.bitcoin.it/wiki/Script, accessed on Apr 5, 2019.

Sam Blackshear, Evan Cheng, David L. Dill, Victor Gao, Ben Maurer, Todd Nowacki, Alistair Pott, Shaz Qadeer, Rain,

Dario Russi, Stephane Sezer, Tim Zakian, and Runtian Zhou. 2019. Move: A Language With Programmable Resources.

https://developers.libra.org/docs/assets/papers/libra-move-a-language-with-programmable-resources.pdf.

Jialiang Chang, Bo Gao, Hao Xiao, Jun Sun, and Zijiang Yang. 2018. sCompile: Critical Path Identification and Analysis for

Smart Contracts. CoRR abs/1808.00624 (2018).

Arthur Charguéraud. 2013. Pretty-Big-Step Semantics. In ESOP (LNCS), Vol. 7792. Springer, 41ś60.

Ting Chen, Xiaoqi Li, Xiapu Luo, and Xiaosong Zhang. 2017. Under-optimized smart contracts devour your money. In

IEEE 24th International Conference on Software Analysis, Evolution and Reengineering, SANER. IEEE Computer Society,

442ś446.

Michael Coblenz. 2017. Obsidian: A Safer Blockchain Programming Language. In ICSE (Companion). IEEE Press, 97ś99.

Coq Development Team. 2019. The Coq Proof Assistant Reference Manual - Version 8.9. http://coq.inria.fr.

Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs

by Construction or Approximation of Fixpoints. In POPL. ACM, 238ś252.

Olivier Danvy. 2019. Folding left and right over Peano numbers. J. Funct. Program. 29 (2019), e6.

Olivier Danvy and Andrzej Filinski. 1990. Abstracting Control. In LISP and Functional Programming. 151ś160.

Olivier Danvy and Andrzej Filinski. 1992. Representing Control: A Study of the CPS Transformation. Mathematical Structures

in Computer Science 2, 4 (1992), 361ś391.

Olivier Danvy and J. Michael Spivey. 2007. On Barron and Strachey’s cartesian product function. In ICFP. ACM, 41ś46.

Michael del Castillo. 2016. The DAO Attacked: Code Issue Leads to $60 Million Ether Theft. https://www.coindesk.com/dao-

attacked-code-issue-leads-60-million-ether-theft/, accessed on Dec 2, 2017.

Werner Dietl, Stephanie Dietzel, Michael D. Ernst, Kivanç Muslu, and Todd W. Schiller. 2011. Building and using pluggable

type-checkers. In ICSE. ACM, 681ś690.

Ethereum Foundation. 2018a. Decentralized Autonomous Organization. https://www.ethereum.org/dao.

Ethereum Foundation. 2018b. ERC20 Token Standard. https://theethereum.wiki/w/index.php/ERC20_Token_Standard.

Ethereum Foundation. 2018c. List of Known Solidity Bugs. https://solidity.readthedocs.io/en/v0.5.7/bugs.html, accessed on

Apr 5, 2019.

Ethereum Foundation. 2018d. Solidity Documentation. http://solidity.readthedocs.io.

Ethereum Foundation. 2018e. Vyper. https://vyper.readthedocs.io.

Ethereum Foundation. 2018f. Yul. https://solidity.readthedocs.io/en/latest/yul.html.

Andrzej Filinski. 1994. Representing Monads. In POPL. ACM Press, 446ś457.

Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. 1993. The Essence of Compiling with Continuations.

In PLDI. ACM, 237ś247.

Jean-Yves Girard. 1987. Linear Logic. Theor. Comput. Sci. 50 (1987), 1ś102.

Jean-Yves Girard. 1972. Interprétation fonctionnelle et élimination des coupures de l’arithmétique d’ordre supérieur. Ph.D.

Dissertation. Université Paris 7.

Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard Scholz, and Yannis Smaragdakis. 2018. MadMax:

surviving out-of-gas conditions in Ethereum smart contracts. PACMPL 2, OOPSLA (2018), 116:1ś116:27.

Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. 2018. A Semantic Framework for the Security Analysis of

Ethereum Smart Contracts. In POST (LNCS), Vol. 10804. Springer, 243ś269.

Shelly Grossman, Ittai Abraham, Guy Golan-Gueta, Yan Michalevsky, Noam Rinetzky, Mooly Sagiv, and Yoni Zohar. 2018.

Online detection of effectively callback free objects with applications to smart contracts. PACMPL 2, POPL (2018).

Emin Gün Sirer. 2016. Reentrancy Woes in Smart Contracts. http://hackingdistributed.com/2016/07/13/reentrancy-woes/

Robert Harper. 2012. Practical Foundations for Programming Languages. Version 1.32.

Yoichi Hirai. 2018. Bamboo. https://github.com/pirapira/bamboo.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

https://en.bitcoin.it/wiki/Script
https://developers.libra.org/docs/assets/papers/libra-move-a-language-with-programmable-resources.pdf
http://coq.inria.fr
https://www.coindesk.com/dao-attacked-code-issue-leads-60-million-ether-theft/
https://www.coindesk.com/dao-attacked-code-issue-leads-60-million-ether-theft/
https://www.ethereum.org/dao
https://theethereum.wiki/w/index.php/ERC20_Token_Standard
https://solidity.readthedocs.io/en/v0.5.7/bugs.html
http://solidity.readthedocs.io
https://vyper.readthedocs.io
https://solidity.readthedocs.io/en/latest/yul.html
http://hackingdistributed.com/2016/07/13/reentrancy-woes/
https://github.com/pirapira/bamboo

Safer Smart Contract Programming with Scilla 185:29

Jan Hoffmann, Ankush Das, and Shu-Chun Weng. 2017. Towards automatic resource bound analysis for OCaml. In POPL.

ACM, 359ś373.

IOHK Foundation. 2019a. Marlowe: A Contract Language For The Financial World. https://testnet.iohkdev.io/marlowe/.

IOHK Foundation. 2019b. Plutus: A Functional Contract Platform. https://testnet.iohkdev.io/plutus/.

Mark P. Jones. 1997. First-class Polymorphism with Type Inference. In Proceedings of the 24th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL). ACM, 483ś496.

Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. Zeus: Analyzing Safety of Smart Contracts. In NDSS.

Andrew Kennedy. 1997. Relational Parametricity and Units of Measure. In POPL. ACM Press, 442ś455.

Aashish Kolluri, Ivica Nikolić, Ilya Sergey, Aquinas Hobor, and Prateek Saxena. 2018. Exploiting The Laws of Order in

Smart Contracts. CoRR abs/1810.11605 (2018). arXiv:1810.11605

Johannes Krupp and Christian Rossow. 2018. teEther: Gnawing at Ethereum to Automatically Exploit Smart Contracts. In

USENIX Security Symposium. USENIX Association, 1317ś1333.

Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. 2014. CakeML: a verified implementation of ML. In

POPL. ACM, 179ś192.

Ralf Lämmel and Simon Peyton Jones. 2003. Scrap your boilerplate: a practical design pattern for generic programming. In

Proceedings of the 2003 ACM SIGPLAN International Workshop on Types in Languages Design and Implementation (TLDI).

ACM, 26ś37.

John Launchbury and Simon L. Peyton Jones. 1994. Lazy Functional State Threads. In Proceedings of the ACM SIGPLAN 1994

Conference on Programming Language Design and Implementation (PLDI). ACM, 24ś35.

James J. Leifer, Gilles Peskine, Peter Sewell, and Keith Wansbrough. 2003. Global abstraction-safe marshalling with hash

types. In ICFP. ACM, 87ś98.

Sheng Liang, Paul Hudak, and Mark P. Jones. 1995. Monad Transformers and Modular Interpreters. In POPL. ACM Press,

333ś343.

LSP 2018. Language Server Protocol. https://langserver.org.

Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. 2016. Making Smart Contracts Smarter. In CCS.

ACM, 254ś269.

Nancy A. Lynch and Mark R. Tuttle. 1989. An Introduction to Input/Output Automata. CWI Quarterly 2 (1989), 219ś246.

Matteo Marescotti, Martin Blicha, Antti E. J. Hyvärinen, Sepideh Asadi, and Natasha Sharygina. 2018. Computing Exact

Worst-Case Gas Consumption for Smart Contracts. In ISoLA (LNCS), Vol. 11247. Springer, 450ś465.

Yaron Minsky. 2016. Let syntax, and why you should use it. Blog post, available at https://blog.janestreet.com/let-syntax-

and-why-you-should-use-it.

John C. Mitchell. 2003. Concepts in programming languages. Cambridge University Press.

Steven S. Muchnick. 1997. Advanced Compiler Design and Implementation. Morgan Kaufmann.

Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. Abailable at http://bitcoin.org/bitcoin.pdf.

Ivica Nikolić, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor. 2018. Finding The Greedy, Prodigal, and

Suicidal Contracts at Scale. In ACSAC. ACM. To appear.

Russell O’Connor. 2017. Simplicity: A New Language for Blockchains. https://blockstream.com/simplicity.pdf.

Scott Owens, Magnus O. Myreen, Ramana Kumar, and Yong Kiam Tan. 2016. Functional Big-Step Semantics. In ESOP (LNCS),

Vol. 9632. Springer, 589ś615.

Simon L. Peyton Jones. 1987. The Implementation of Functional Programming Languages. Prentice-Hall.

Simon L. Peyton Jones. 2013. Type-Directed Compilation in the Wild: Haskell and Core. In TLCA (LNCS), Vol. 7941. Springer.

George Pîrlea and Ilya Sergey. 2018. Mechanising Blockchain Consensus. In CPP. ACM, 78ś90.

Robert Pollack. 1990. Implicit Syntax. In Informal Proceedings of First Workshop on Logical Frameworks, Antibes.

Stuart Popejoy. 2017. The Pact Smart-Contract Language, Revision 1.5. http://kadena.io/docs/Kadena-PactWhitepaper.pdf.

RChain Cooperative. 2019. Rholang. https://rholang.rchain.coop.

Christian Reitwiessner. 2017. BabbageÐa mechanical smart contract language. Online blog post.

John C. Reynolds. 1974. Towards a theory of type structure. In Programming Symposium (LNCS), Vol. 19. Springer, 408ś423.

John C. Reynolds. 1998. Definitional Interpreters for Higher-Order Programming Languages. Higher-Order and Symbolic

Computation 11, 4 (1998), 363ś397.

Michael Rodler, Wenting Li, Ghassan O. Karame, and Lucas Davi. 2019. Sereum: Protecting Existing Smart Contracts Against

Re-Entrancy Attacks. In NDSS.

Grigore Rosu. 2018. IELE: A New Virtual Machine for the Blockchain. https://iohk.io/blog/iele-a-new-virtual-machine-for-

the-blockchain.

Franklin Schrans. 2018. Writing Safe Smart Contracts in Flint. Master’s thesis. Imperial College London, Department of

Computing.

Franklin Schrans, Susan Eisenbach, and Sophia Drossopoulou. 2018. Writing safe smart contracts in Flint. In <Programming>

(Companion). ACM, 218ś219.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

https://testnet.iohkdev.io/marlowe/
https://testnet.iohkdev.io/plutus/
http://arxiv.org/abs/1810.11605
https://langserver.org
https://blog.janestreet.com/let-syntax-and-why-you-should-use-it
https://blog.janestreet.com/let-syntax-and-why-you-should-use-it
http://bitcoin.org/bitcoin.pdf
https://blockstream.com/simplicity.pdf
http://kadena.io/docs/Kadena-PactWhitepaper.pdf
https://rholang.rchain.coop
https://iohk.io/blog/iele-a-new-virtual-machine-for-the-blockchain
https://iohk.io/blog/iele-a-new-virtual-machine-for-the-blockchain

185:30 Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit Kumar, Anton Trunov, and Ken Chan Guan Hao

Ilya Sergey, Dominique Devriese, Matthew Might, Jan Midtgaard, David Darais, Dave Clarke, and Frank Piessens. 2013.

Monadic Abstract Interpreters. In PLDI. ACM, 399ś410.

Ilya Sergey, Amrit Kumar, and Aquinas Hobor. 2018a. Scilla: a Smart Contract Intermediate-Level LAnguage. CoRR

abs/1801.00687 (2018). http://arxiv.org/abs/1801.00687

Ilya Sergey, Amrit Kumar, and Aquinas Hobor. 2018b. Temporal Properties of Smart Contracts. In ISoLA (LNCS), Vol. 11247.

Springer, 323ś338.

Ilya Sergey, Dimitrios Vytiniotis, and Simon L. Peyton Jones. 2014. Modular, higher-order cardinality analysis in theory and

practice. In POPL. ACM, 335ś348.

Peter Sestoft. 1996. ML Pattern Match Compilation and Partial Evaluation. In International Seminar on Partial Evaluation,

Dagstuhl Castle (LNCS), Vol. 1110. Springer, 446ś464.

Amin Shali and William R. Cook. 2011. Hybrid Partial Evaluation. In OOPSLA. ACM, 375ś390.

Dieter Shirley. 2018. ERC-721. http://erc721.org/.

Jeremy Siek. 2012. Big-step, diverging or stuck? http://siek.blogspot.com/2012/07/big-step-diverging-or-stuck.html.

Jeremy Siek. 2013. Type safety in three easy lemmas. http://siek.blogspot.com/2013/05/type-safety-in-three-easy-

lemmas.html.

Flora Sun. 2018. UTXO vs Account/Balance Model. Online blog post, available at https://medium.com/@sunflora98/utxo-

vs-account-balance-model-5e6470f4e0cf.

Nick Szabo. 1994. Smart Contracts. Online manuscript.

Tezos Foundation. 2018a. Michelson: the language of Smart Contracts in Tezos. http://tezos.gitlab.io/mainnet/whitedoc/

michelson.html.

Tezos Foundation. 2018b. Liquidity. http://www.liquidity-lang.org/.

Sergei Tikhomirov, Ekaterina Voskresenskaya, Ivan Ivanitskiy, Ramil Takhaviev, Evgeny Marchenko, and Yaroslav Alexan-

drov. 2018. SmartCheck: Static Analysis of Ethereum Smart Contracts. In WETSEB@ICSE. ACM, 9ś16.

Anton Trunov. 2019. A Scilla vs Move case study. Blog post available at https://medium.com/@anton_trunov/a-scilla-vs-

move-case-study-afa9b8df5146.

Petar Tsankov, Andrei Marian Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian Bünzli, and Martin T. Vechev. 2018.

Securify: Practical Security Analysis of Smart Contracts. In CCS. ACM, 67ś82.

Peng Wang. 2019. Type System for Resource Bounds with Type-Preserving Compilation. Ph.D. Dissertation. Massachusetts

Institute of Technology.

Gavin Wood. 2014. Ethereum: A Secure Decentralized Generalised Transaction Ledger.

Andrew K. Wright and Matthias Felleisen. 1994. A Syntactic Approach to Type Soundness. Inf. Comput. 115, 1 (1994), 38ś94.

Zilliqa Team. 2017. The Zilliqa Technical Whitepaper. https://docs.zilliqa.com/whitepaper.pdf Version 0.1.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

http://arxiv.org/abs/1801.00687
http://erc721.org/
http://siek.blogspot.com/2012/07/big-step-diverging-or-stuck.html
http://siek.blogspot.com/2013/05/type-safety-in-three-easy-lemmas.html
http://siek.blogspot.com/2013/05/type-safety-in-three-easy-lemmas.html
https://medium.com/@sunflora98/utxo-vs-account-balance-model-5e6470f4e0cf
https://medium.com/@sunflora98/utxo-vs-account-balance-model-5e6470f4e0cf
http://tezos.gitlab.io/mainnet/whitedoc/michelson.html
http://tezos.gitlab.io/mainnet/whitedoc/michelson.html
http://www.liquidity-lang.org/
https://medium.com/@anton_trunov/a-scilla-vs-move-case-study-afa9b8df5146
https://medium.com/@anton_trunov/a-scilla-vs-move-case-study-afa9b8df5146
https://docs.zilliqa.com/whitepaper.pdf

	Abstract
	1 Introduction
	1.1 Our Proposal
	1.2 Pragmatic and Conceptual Contributions

	2 Overview
	2.1 Contracts as State-Transition Systems
	2.2 Imperative Fragment
	2.3 Expressions

	3 Execution Semantics
	3.1 Evaluation of Expressions and Statements
	3.2 The Life Cycle of a Contract
	3.3 Tracking Gas Consumption
	3.4 A Continuation-Passing Style Evaluator
	3.5 Interaction with the Protocol Layer

	4 Type System and Basic Contract Validation
	5 Support for Lightweight Verification
	5.1 Compositional Gas Usage Analysis
	5.2 Cash-Flow Analysis

	6 Implementation, Evaluation, and Adoption
	6.1 Our Experience
	6.2 Performance Evaluation and Comparison to EVM
	6.3 Scilla in the Wild

	7 Discussion
	8 Related Work
	9 Future Directions and Conclusion
	A Notable Scilla Contracts
	A.1 Contributed Contracts on Zilliqa Main-Net
	A.2 Community Contract Repositories

	Acknowledgments
	References

