
Temporal Properties of Smart Contracts

Ilya Sergey1,2, Amrit Kumar2, and Aquinas Hobor3

1 University College London, United Kingdom
2 Zilliqa, Singapore and United Kingdom

{ilya, amrit}@zilliqa.com
3 Yale-NUS College and School of Computing, NUS, Singapore

hobor@comp.nus.edu.sg

Abstract. Smart contracts—shared stateful reactive objects stored on
a blockchain—are widely employed nowadays for mediating exchanges
of crypto-currency between multiple untrusted parties. Despite a lot of
attention given by the formal methods community to the notion of smart
contract correctness, only a few efforts targeted their lifetime properties.
In this paper, we focus on reasoning about execution traces of smart
contracts. We report on our preliminary results of mechanically verifying
some of such properties by embedding a smart contract language into
the Coq proof assistant. We also discuss several common scenarios, all
of which require multi-step blockchain-based arbitration and thus must
be implemented via stateful contracts, and discuss possible temporal
specifications of the corresponding smart contract implementations.

1 Introduction

Smart contracts are stateful reactive objects that are stored on a blockchain
and serve as mediators for multi-party fund-transferring computations. The last
three years have seen a proliferation of smart contracts implementing various de-
centralised applications (Dapps) on top of the Ethereum blockchain [27]. During
this period of ongoing early adoption, the smart contract technology provided
by Ethereum has witnessed a number of serious hurdles, manifested by various
safety and security vulnerabilities in the deployed implementations and result-
ing in the losses of USD millions’ worth of cryptocurrency [2, 9]. Since, once
deployed to the blockchain, a contract’s implementation cannot be amended,
the challenge of identifying the contracts’ “good” and “bad” behaviours at the
stage of development becomes particularly acute.

In order to ensure the absence of unwelcome outcomes, it is important to be
able to reason about safety and liveness of contract executions across multiple
transactions and about its possible interactions with other contracts or users.
One representative high-level safety issue, manifested in multi-transactional con-
tract executions with oracles, is a presence of race conditions, that might leave a
contract in an inconsistent state due to unaccounted multiple parties interacting
with it in different moments of time, commonly happening while communicating
with external oracles [23]. Improperly incentivizing the parties taking different
roles in a contract’s execution might lead to denial-of-service leaving funds per-

1

manently blocked—a violation of an implicitly assumed liveness property (mean-
ing, informally, that eventually the funds can be retrieved by a well-behaved
party) [3, 18]. Detecting such contract instances for the sake of informing the
developers, before they are deployed, requires techniques for specifying what is
considered to be correct contract behaviours, and whether a given implementa-
tion always adheres to this specification.

In this paper, we make an observation that many behavioural properties of
smart contracts that are considered “natural” can be only captured in reference
to their multi-step executions, by defining relations on a contract’s state in dif-
ferent moments of time, thus, corresponding to well-studied temporal properties
of programs and state-transition systems [14,21]. We substantiate this claim and
demonstrate the utility of temporal reasoning in application to smart contracts
by using Scilla, a recently proposed principled programming model for rep-
resenting stateful contracts as communicating state-transition systems [24], to
express simplified implementations of several classes of popular Dapps. We then
sketch the execution semantics of Scilla smart contracts and use it to define
the notion of contract execution traces. Using this trace-based semantics, we
then state a number of temporal properties, capturing the notion of particular
classes of “well-behaved” smart contracts. Finally, we report on some prelimi-
nary results of mechanising the temporal reasoning by encoding Scilla and its
semantics into Coq proof assistant [7].

In this manuscript, we do not attempt to design a new set of temporal logic
connectives for specifying contract properties. Instead, we demonstrate how the
natural properties of execution traces can be encoded and proved by means of
shallow embedding into Coq’s higher-order logic [8], leaving the formal descrip-
tion of the standalone temporal logic for smart contracts as our future work.

2 Overview and Motivation

Let us consider a fragment of the infamous BlockKing contract [1], taken di-
rectly from the Ethereum mainnet.4 Its code in Solidity [26] is presented in
in Figure 1. This contract has been a popular testbed for several analyses for
smart contracts recently, due to its flawed implementations, prone to concurrency
errors [23], commutativity violations [5], and dynamically-determined resource
consumption [6]. The defining feature of this contract is interaction with an
off-chain oracle service Oraclize by means of calling the oraclize_query() func-
tion in line 303, so that an oracle can return an expected result by calling the
__callback() function in line 306. The crux of the problematic behaviour is in
the three mutable fields of the BlockKing contract: warrior, warriorGold, and
warriorBlock, all of which, after having been set by call to enter() in a trans-
action tx1, can be later overriden by a transaction tx2 of a competing client of
the same contract when executed concurrently.

In this scenario, an oracle’s response via __callback() might return the value
for the value “meant” for the values of the fields set by tx1 that are no longer
present (since they are overriden by tx2), whereas the sender of tx2 will enjoy

4 At the moment of this writing, the contract still holds approximately 0.043 ETH.

2

293 function enter() {
294 // 100 finney = .05 ether minimum payment otherwise refund payment and stop contract
295 if (msg.value < 50 finney) {
296 msg.sender.send(msg.value);
297 return;
298 }
299 warrior = msg.sender;
300 warriorGold = msg.value;
301 warriorBlock = block.number;
302 bytes32 myid =
303 oraclize_query(0,"WolframAlpha","random number between 1 and 9");
304 }
305
306 function __callback(bytes32 myid, string result) {
307 if (msg.sender != oraclize_cbAddress()) throw;
308 randomNumber = uint(bytes(result)[0]) - 48;
309 process_payment();
310 }
311
312 function process_payment() {

...

339 if (singleDigitBlock == randomNumber) {
340 rewardPercent = 50;
341 // If the payment was more than .999 ether then increase reward percentage
342 if (warriorGold > 999 finney) {
343 rewardPercent = 75;
344 }
345 king = warrior;
346 kingBlock = warriorBlock;
347 }

Figure 1. Fragments of the smart contract implementing the BlockKing game.

the double reward, “cashing out” both the results of its own game and also when
doing so “on behalf” of tx1 sender’s.

While multiple ways to identify this problem exist, by employing either concur-
rency [23], resource [6] or commutativity reasoning [5], we consider this example
as an opportunity to provide a “morally correct” specification to the function-
ality of this game-implementing contract that has to do with identifying the
reward by means of taking a random input from an oracle, and transferring this
reward to the corresponding player. One way to state the desired property semi-
formally in the style of Lamport [15] is by means of demanding certain causality
between the two events in the contract’s execution history: entering a game and
executing a callback. This can be done as follows:

Property 1 (Correctness of BlockKing payment processing). Any call to enter()

from a sender account a sets the value of the field warrior to a, so when the
next call to __callback() by an oracle takes place, the value of warrior is still a.

Obviously, for the given implementation in Figure 1 does not hold, as they can
be violated in the presence of the concurrent transactions. In order to ensure this
property, the contract can be fixed by, for instance, enhancing it with a locking
discipline, prohibiting other players to enter the game before the callback is
executed, with the obvious drawback of such a solution that would make the
contract prone to DoS attacks. A more clever approach would require one to

3

engineer a register of the players who currently have entered the game but have
not got their payments processed.

While fixing the BlockKing contract is not the topic of this paper, this ex-
ample should make apparent the importance of temporal properties of smart
contract implementations, relating the effects of events (such as receiving re-
quests and sending funds) taking place at certain moments of time, as well as
the contract’s state at those moments. However, even writing such temporal
specification formally for Solidity or EVM contracts is far from trivial, due to
(a) intricate control-flow patterns, (b) dependence of one contract’s logic on
another contract’s state and (c) the presence of the implicit execution stack.

To address this specification challenge, we designed of a programming frame-
work for smart contracts and an accompanying semantic formalism that separate
and streamline the computation/communication aspects of contracts and allow
for natural specifications and verification of safety and liveness properties.

3 The Language and Semantic Model

In order to enable formal reasoning about complex behaviour of stateful smart
contracts, we designed Scilla: a novel intermediate-level programming language
for smart contracts [24]. By “intermediate” we mean that we do not expect most
programmers to write in Scilla directly, any more than most programmers
write in x86 assembly directly. Instead, the typical path will be to compile a
higher-level language to Scilla and then further to an executable bytecode,
very much in a tradition of optimising [20] and verified compilers [16]. Scilla
aims to achieve both expressivity and tractability, while enabling rigorous formal
reasoning about contract behavior, by adopting the following fundamental design
principles, based on separation of programming concerns:

Separation between computation and communication. Contracts in Scilla are
structured as communicating automata: every in-contract computation (e.g.,
changing its balance or computing a value of a function) is implemented as
a standalone, atomic transition, i.e., without involving any other parties. When-
ever such involvement is required (e.g., for transferring control to another party),
a transition would end, with an explicit communication, by means of sending
and receiving messages. The automata-based structure makes it possible to dis-
entangle the contract-specific effects (i.e., transitions) from blockchain-wide in-
teractions (i.e., sending/receiving funds and messages), thus providing a clean
reasoning mechanism about contract composition and invariants.

Separation between effectful and pure computations. Any in-contract computa-
tion happening within a transition has to terminate, and have a predictable
effect on the state of the contract and the execution. In order to achieve this, we
draw inspiration from functional programming with effects, drawing a distinction
between pure expressions (e.g., expressions with primitive data types and maps),
impure local state manipulations (i.e., reading/writing into contract fields) and
blockchain reflection (e.g., reading current block number). By carefully designing
semantics of interaction between pure and impure language aspects, we ensure a
number of foundational properties about contract transitions, such as progress

4

1 contract Crowdfunding
2 (owner : Address,
3 max_block : Uint32,
4 goal : Uint32)
5
6 (* Mutable state description *)
7 field backers : Map Address Uint32 =
8 Emp {Address Uint32}
9 field funded : Bool = False

10
11 (* Transition 1: Donating money *)
12 transition Donate
13 (sender : Address, value : Uint32,
14 tag : String)
15 (* Identifying this transition *)
16 bs← backers;
17 blk← & BLOCKNUMBER;
18 nxt_block = blk + 1;
19 if max_block ≤ nxt_block
20 then send {to : sender, amount : 0,
21 tag : "main",
22 msg : "deadline_passed"}
23 else
24 if not (contains(bs, sender))
25 then
26 bs1 = put(bs, sender, value);
27 backers := bs1;
28 send {to : sender, amount : 0,
29 tag : "main", msg : "ok"}
30 else
31 send {to : sender, amount : 0,
32 tag : "main",
33 msg : "already_donated"}

34 (* Transition 2: Sending the funds to the owner *)
35 transition GetFunds
36 (sender : Address, value : Uint32, tag : String)
37 blk← & BLOCKNUMBER;
38 bal← balance;
39 if (max_block < blk) && (sender == owner)
40 then if goal ≤ bal
41 then
42 funded := True;
43 send {to : owner, amount : bal,
44 tag : "main", msg : "funded"}
45 else send {to : owner, amount : 0,
46 tag : "main", msg : "failed"}
47 else send {to : owner, amount : 0, tag : "main",
48 msg : "too_early_to_claim_funds"}
49
50 (* Transition 3: Reclaim funds by a backer *)
51 transition Claim
52 (sender : Address, value : Uint32, tag : String)
53 blk← & BLOCKNUMBER;
54 if blk ≤ max_block
55 then send {to : sender, amount : 0, tag : "main",
56 msg : "too_early_to_reclaim"}
57 else bs← backers;
58 bal← balance;
59 if (not (contains(bs, sender))) || funded ||
60 goal ≤ bal
61 then send {to : sender, amount : 0,
62 tag : "main",
63 msg : "cannot_refund"}
64 else
65 v = get(bs, sender);
66 backers := remove(bs, sender);
67 send {to : sender, amount : v, tag : "main",
68 msg : "here_is_your_money"}

Figure 2. Crowdfunding contract in idealised Scilla: state and transitions.

and type preservation, while also making them amenable to interactive and/or
automatic verification with standalone tools.

Structuring contracts as communicating automata provides a computational
model, known as continuation-passing style (CPS), in which every call to an
external function (i.e., another contract) can be done as the absolutely last
instruction. That is, programming in Scilla naturally forces the programmer to
express the computations with the contract as standalone transitions, performed
atomically, i.e., without the intermediate interaction with other contracts and
relying only on the received messages.

3.1 Syntax of Idealised Scilla

We present our examples in idealised Scilla that has a richer syntax than
the original one. For instance, “vanilla” Scilla does not feature if-then-else

statement, and allows for expressions only in A-Normal Form [22].5

Figure 2 shows a Scilla implementation of a crowdfunding campaign à la
Kickstarter. In a crowdfunding campaign, a project owner wishes to raise funds
through donations from the community. In the specific example modelled here,
we assume that the owner wishes to run the campaign for a certain pre-determined
period of time. The owner also wishes to raise a minimum amount of funds with-

5 For the full specification of Scilla syntax and runnable contract examples, please,
refer to http://scilla-lang.org.

5

http://scilla-lang.org

out which the project can not be started. The campaign is deemed successful if
the owner can raise the minimum goal. In case the campaign is unsuccessful, the
donations are returned to the project backers who contributed during the cam-
paign. The design of the Crowdfunding contract is intentionally simplistic (for
example, it does not allow the backers to change the amount of their donation),
yet it shows the important features of Scilla, which we elaborate upon.

The contract is parameterised with three values that will remain immutable
during its lifetime (lines 2–4): an owner account address owner of type Address, a
maximal block number max_block (of type Uint32, isomorphic to natural numbers
bound by 32-bit depth), indicating a deadline, after which no more donations
will be accepted from backers, and a goal (also of type Uint32) indicating the
amount of funds the owner plans to raise. The goal is not a hard cap but rather
the minimum amount that the owner wishes to raise. What follows is the block
of mutable field declarations (lines 7–9). The mutable fields of the contract are
the mapping backers (of type Map Address Uint32), which will be used to keep
track of the incoming donations and is initialised with an explictly typed empty
map literal Emp {Address Uint32}, and a mutable boolean flag funded that in-
dicates whether the owner has already transferred the funds after the end of
the campaign (initialised with False). In addition to these fields, any contract
in Scilla has an implicitly declared mutable field balance (initialised upon the
contract’s creation), which keeps the amount of funds held by the contract.

The logic of the contract is implemented by three transitions: Donate, GetFunds,
and Claim. The first one serves for donating funds to a campaign by external
backers; the second allows the owner to transfer the funds to its account once
the campaign is ended and the goal is reached; the final one makes it possible for
the backers to reclaim their funds in the case the campaign was not successful.

One can think of transitions as methods or functions in Solidity contracts.
What makes them different from functions, though, is the atomicity of the com-
putation enforced at the language level. Specifically, each transition manipulates
only with the state of the contract itself, without involving any other contracts
or parties. All interaction with the external world, with respect to the contract,
happens either at the very start of a transition, when it is initiated by an ex-
ternal message, or at the end, when a message (or messages), possibly carrying
some amount of funds, can be emitted and sent to other parties.

Each transition can be invoked by a suitable message, which should provide
a corresponding tag as its component to identify which transition is triggered.
It is enforced at the compile time that tags define transitions unambiguously.
All other components of the message, relevant for the transition to be executed,
are declared as the transition’s parameters. For instance, the transition Donate

expects the incoming message to have at least the fields sender, value, and tag.
Each transition will only fire if an incoming message contains an explicit tag—a
string with the contract transition’s name, e.g., code”Donate”, which uniquely
identifies the code to run upon receiving it.

Every transition’s last command, in each of the execution branches, is either
sending a set of messages, or simply returning. Messages are encoded as records

6

{...} of name : value entries, including at least the destination address (to),
an amount of funds transferred (amount) and a default tag of the function to
be invoked (tag). All transitions of the Crowdfunding end by sending a message
to either the sender of the initial request or the contract’s owner. For example,
depending on the state of the contract and the blockchain, the transition GetFund

might end up in either sending a message with its balance to the contract’s owner,
if the campaign has succeeded and the deadline has passed, or zero funds with
a corresponding text otherwise.

The state of the contract, represented by its fields, is mutable: it can be
changed by the contract’s transitions. A body of a transition can read from the
fields, assigning the result to immutable stack variables using the specialised syn-
tax x ←f;, where f is a field name and x is a fresh name of a local variable (e.g.,
lines 16 and 57). In a similar vein, a body of transition can store a result of a
pure expression e into a contract field f using the syntax f := e; (as in lines 28
and 66). The dichotomy between pure expressions (coming with correspond-
ing binding form x = e; to an immutable variable x) and impure (“effectful”)
commands manipulating the field values, is introduced on purpose to facilitate
logic-based verification of contracts, reasoning about the effect of a transition to
the contract’s state, while abstracting away from evaluation of pure expressions.

In addition to reading/writing contract state, each transition implementation
can use read-only introspection on the current state of the blockchain using the
“deep read” operation x ←& BF;, where BF is a name of the corresponding aspect
of the underlying blockchain state, e.g., BLOCKNUMBER—a number of the block to
which the transiation is included. For example, the Crowdfunding contract reads
the number of a current block in lines 17 and 37.

3.2 Semantics

We are developing Scilla hand-in-hand with the formalisation of its semantics
and its embedding into the Coq proof assistant [7].6 We now briefly outline the
key components of our formalisation of the trace semantics of Scilla contracts.
We will not explain the entire syntax of our Coq encoding, for which we refer
the reader to the accompanying technical report [24].

Figure 3 provides Coq definitions of a small-step operational semantics step_prot
of a contract C by means of executing, for the contract pre-state pre, in the
blockchain state bc, an applicable transition, which is uniquely determined by
an incoming message m, via apply_transition, and changing the contract’s state
and balance accordingly. The sequence of such changes contributes for a particu-
lar schedule sc of incoming messages contributes an execution traces, as defined
by the function execute.

3.3 Higher-order trace predicates

With the operational semantics and the definition of traces at hand, we can now
proceed to defining trace predicates for specifying relevant contract properties.

6 The mechanised embedding of a subset of Scilla into Coq is publicly available for
downloads and experiments: https://github.com/ilyasergey/scilla-coq.

7

https://github.com/ilyasergey/scilla-coq

(* In the following definition, a contract automata C is implicit and fixed. *)
Definition step_prot (pre : cstate S) (bc : bstate) (m : message) : step :=
let CState id bal s := pre in
let (s’, out) := apply_transition C id bal s m bc in
let bal’ := if out is Some m’

then (bal + val m) - val m’ else bal in
let post := CState id bal’ s’ in
Step pre post out.

(* Map a schedule into a trace *)
Fixpoint execute (pre : cstate S) (sc: schedule) : trace :=
if sc is (bc, m) :: sc’
then let stp := step_prot pre bc m in stp :: execute (post stp) sc’
else [::].

Definition state0 := CState (acc C) (init_bal C) (init_state C).
Definition execute0 sc := if sc is _ :: _ then execute state0 sc else [:: Step state0 state0 None].

Figure 3. Contract traces and semantics.

We first define a predicate I on a contract state (denoted, in Coq terms, by a
“function type” cstate S→ Prop from the type of states cstate S to propositions
Prop) to be a safety property if it holds at any state of a contract, that can be
obtained as a result of interaction between the contract and its environment,
starting from the initial state. The following Coq definition states this formally:

Definition safe (I : cstate S → Prop) : Prop :=

(* For any schedule sc, pre/post states and out... *)

∀ sc pre post out,

(* s.t. triple Step (pre, post, out) is in the sc-induced trace *)

Step pre post out ∈ execute0 sc →
(* both pre and post satisfy I *)

I pre ∧ I post.

A safety property means some universally true correctness condition holds
at any contract’s state, which is reachable from its initial configuration via
any schedule sc. Typical examples of safety properties of interest include: “a
contract’s balance is always positive”, “a contract’s balance equals the sum of
balances of its contributors”, or “at any moment no money is blocked on the
contract”. The definition above thus defines safety by universally quantifying
over all schedules sc, as well as step-triples Step pre post out that occur in a
trace, obtained by following sc.

As the next example, let us consider a temporal connective since_as_long p q r,
which means the following: once the contract is in a state st, in which (i) the
property p is satisfied, each state st’ reachable from st (ii) satisfies a binary
property q st st’ (with respect to st), as long as (iii) every element of the
schedule sc, “leading” from st to st’ satisfies a predicate r.

The corresponding Coq encoding of the since_as_long connective is given
below. We first specify reachability between states st and st’ via a schedule sc

as the state st’ being the last post-state in a trace obtained by executing the
contract from st via sc:

Definition reachable (st st’ : cstate S) sc :=

8

st’ = post (last (Step st st None) (execute st sc)).

We next employ the definition of reachability to define the since connective,
which is parameterised by predicates p, q and r. The premises (i)–(iii) are out-
lined in the corresponding comments in the following Coq code:

(* q holds since p, as long as schedule bits satisfy r. *)

Definition since_as_long (p : cstate S → Prop)

(q : cstate S → cstate S → Prop)

(r : bstate * message → Prop) := ∀ sc st st’,

(* (i) st satisfies p *)

p st →
(* (ii) st’ is reachable from st via sc *)

reachable st st’ sc →
(* (iii) any element b of sc satisfies r *)

(∀ b, b ∈ sc → r b) →
(* (conclusion) q holds over st and st’ *)

q st st’.

Why this logical connective is useful for reasoning about contract correctness?
As we will show further, it makes it possible to concisely express “preservation”
properties relating contract balance and state, so that they hold as long as certain
actions do not get triggered by some of the contract’s users.

4 Specifying and Verifying Trace Properties

We now show how the combination of notions of safety and temporal proper-
ties presented in Section 3.3 allows us to verify a contract, proving that all its
behaviours satisfy a certain complex interaction scenario.7 Specifically, for our
Crowdfunding example, let us prove that, once a donation d has been made by a
backer with an account address b, given that the campaign eventually fails, the
backer b will be always able to get their donation d back. This can be obtained
as the conjunction of the following three properties embodying both safety and
temporal reasoning.

Property 1 (No leaking funds). The contract’s accounted funds do not decrease
unless the campaign has been funded or the deadline has expired.

In our Coq formalisation, this property can be captured via the following
definition balance_backed and the accompanying safety theorem, stating that is
always holds:

Definition balance_backed st : Prop :=

(* If the campaign has not been funded... *)

¬ funded (state st) →
(* the contract has enough funds to reimburse all. *)

sumn (map snd (backers (state st))) <= balance st.

For an arbitrary contract state st, it asserts that if the funded flag is still false
in st (i.e., ¬funded (state st)), then the balance of the contract (balance st)

7 All definitions, theorems and proofs are in the accompanying Coq development.

9

is at least as large as the sum of all donations made by the recorded backers
(sumn (map snd (backers (state st)))).

Theorem no_leaking_funds : safe balance_backed.

The second property, which is temporal and it relates several states during
the contract’s lifetime is informally stated as follows:

Property 2 (Donation record preservation). The contract preserves records of
individual donations by backers, unless they interact with it.

To specify this property and state the corresponding theorem we rely on the
temporal connective since_as_long defined above and state that, once a backer
made a donation, the record of it is not going to be lost by the contract, as long
as the backer makes no attempt to withdraw its donation.

(* Contribution d of a backer b is recorded in the field ’backers’. *)

Definition donated b (d : value) st := get (backers (state st)), b) == d.

(* b doesn’t claim its funding back *)

Definition no_claims_from b (q : bstate * message) := sender q.2 != b.

Theorem donation_record_preservation (b : address) (d : value):

since_as_long c (donated b d)

(fun _ s’ ⇒ donated b d s’)

(no_claims_from b).

By now we know that the contract does not lose the donated funds and keeps
the backer records intact. Now we need the last piece: the proof that if a contract
is not funded, and the campaign has failed (deadline has passed and the goal has
not been reached), then any backer with the corresponding record can eventually
get the donation back, hence the following property:

Property 3 (The backer can get refunded). If the campaign fails, the backers can
eventually get their refund.

We state the property of interest as theorem can_get_refund in Figure 4. As
its premises (a)–(d), the theorem lists all the assumptions about the state of
the contract that are necessary for getting the reimbursement. The conclusion
is somewhat peculiar: it expresses the possibility to claim back the funds by
postulating the existence of a message m, such that it can be sent by a backer
b, and the response will be a message with precisely d funds in it, sent back to
b. The theorem, whose proof is only 10 lines of Coq, formulates the property as
one single-step, yet its statement can be easily shown to be a safety property, as
it is, indeed, preserved by the transitions, and, after the funds are successfully
claimed for the first time, the premise (a) of the statement is going to be false,
hence the property will trivially hold.

Properties 1–3 deliver the desired correctness condition of a contract: once
donated money can be claimed back in the case of a failed campaign. It is indeed
not the only notion of correctness that intuitively should hold over this particular

10

Theorem can_get_refund id b d st bc:

(* (a) The backer b has donated d, so the contract holds

that record in its state *)

donated b d st →
(* (b) The campaign has not been funded. *)

¬ funded (state st) →
(* (c) Balance is small: not reached the goal. *)

balance st < (get_goal (state st)) →
(* (d) Block number exceeds the deadline. *)

get_max_block (state st) < block_num bc →
(* (conclusion) Backer b can get their donation back. *)

∃ (m : message),

sender m == b ∧
out (step_prot c st bc m) = Some (Msg d id b 0 ok_msg).

Figure 4. A backer can claim back her funds if the campaign fails.

contract, and by proving it we did not ensure that the contract is “bug-free”. For
instance, in our study we focused on backers only, while another legit concern
would be to formally verify that the contract’s owner will be able transfer the
cumulative donation to their account in the case if the campaign is successful.

5 More Temporal Properties of Common Contracts

We now show two more stateful smart contracts, which commonly occur on
Ethereum blockchain, but implemented in Scilla, informally outlining temporal
properties of interest one should aim to prove over their implementations.

5.1 Properties of Auctions

Figure 5 shows an implementation of a simple auction in Scilla. Its parameters
include the starting block auctionStart, a number of blocks biddingTime for
which it is open for bidding, as well as the address of the beneficiary, to which
the funds are going to be transferred once the bidding is closed. The mutable
fields record the fact whether the auction has ended, the latest highestBidder,
their highestBid as well as a mapping of the pending returns, to be reclaimed by
bidders who no longer offer the highest bid, but have not yet been reimbursed.

The contract features three transitions. The first one, Bid allows anyone to bid
for winning in the auction. In case of a higher new bid, the previous highestBidder
is replaced, simultaneously getting a record in pendingReturns, so they could
claim their overall bid amount later. The second transition Withdraw makes it
possible for any previous bidder (who is no longer the highest one) to reclaim
the amount of all their previous bids in one transfer. Finally, the transition
AuctionEnd allows the beneficiary to receive the amount of the highest bid, once
the auction has finished.

Even though we encoded this contract in Scilla, we have not formalised and
verified any of its properties as we did for Crowdfunding in the previous section.8

8 That is, there might be bugs in the code, and we invite the reader to find them!

11

1 contract SimpleAuction(
2 auctionStart: Uint32,
3 biddingTime: Uint32,
4 beneficiary: Address
5)
6
7 field ended: Bool = False
8 field highestBidder: Address = 0
9 field highestBid: Uint32 = 0

10 field pendingReturns : Map Address Uint32 =
11 Emp {Address Uint32}
12
13 (* Transition 1: bidding *)
14 transition Bid (sender : Address,
15 value : Uint32, tag : String)
16 blk← & BLOCKNUMBER;
17 end = auctionStart + biddingTime;
18 after_end = end + 1;
19 e← ended;
20 if after_end ≤ blk || e
21 then
22 send {to : sender, amount : 0,
23 tag : "main", msg : "late_to_bid"}
24 else
25 hb← highestBid;
26 if value ≤ hb
27 then
28 send {to : sender, amount : 0,
29 tag : "main", msg : "bid_too_low"}
30 else
31 hbPrev← highestBidder;
32 prs← pendingReturns;
33 b = contains(prs, hbPrev);
34 prs1 = b ?
35 let pr = get(prs, hbPrev) in
36 let hs1 = pr + highestBid in
37 put(prs, hbPrev, hs1) :
38 put(prs, hbPrev, highestBid);
39 pendingReturns := prs1;
40 highestBidder := sender;
41 highestBid := value;
42 send {to : sender, amount : 0,
43 tag : "main", msg : "bid_accepted"}

44 (* Transition 2: claiming money back *)
45 transition Withdraw
46 (sender : Address,
47 value : Uint32,
48 tag : String)
49 prs← pendingReturns;
50 b = contains(prs, hbsender);
51 if b
52 then
53 let pr = get(prs, sender) in
54 let prs1 = remove(prs, sender) in
55 pendingReturns := prs1;
56 send {to : sender, amount : pr,
57 tag : "main", msg : "take_your_money"}
58 else
59 send {to : sender, amount : 0, tag : "main",
60 msg : "nothing_to_withdraw"}
61
62 (* Transition 3: auction ends *)
63 transition AuctionEnd
64 (sender : Address,
65 value : Uint32, tag : String)
66 blk← & BLOCKNUMBER;
67 e← ended;
68 t1 = auctionStart + biddingTime;
69 t2 = blk ≤ t1;
70 t3 = not e;
71 t4 = t2 || t3;
72 if t4
73 then
74 send {to : sender, amount : 0,
75 tag : "main", msg : "auction_not_over"}
76 else
77 ended := True;
78 hb← highestBid;
79 send {to : beneficiary, amount : hb,
80 tag : "main", msg : "highest_bid"}

Figure 5. An Auction contract in idealised Scilla.

The goal of this smart contract programming exercise is, thus, to formulate the
desired properties and assess their adequacy. We suggest the following temporal
properties for the simple auction contract:

P1. The balance of SimpleAuction should be greater or equal than the sum of
the highestBid and values of all entries in pendingReturns.

P2. For any account a, the value of the corresponding entry in pendingReturns

(if present) should be equal to the sum of values of all transfers a has made
during its interaction with the contract.

P3. An account a, which is not the higher bidder, should be able to retrieve the
full amount of their bids from the contract, and do it exactly once.

Together, a combination of these properties ensure that the contract is not
“prodigal”, i.e., does not dispense its funds frivolously to the parties who have
no right to claim them, neither that it is “greedy”, i.e., it does not lock funds
forever, so they can be always retrieved [18].

12

1 contract RockPaperScissors (
2 player1: Address,
3 player2: Address,
4 owner: Address
5)
6
7 field p1Choice : String = ""
8 field p2Choice : String = ""
9 field payoffMatrix :

10 Map String (Map String Uint32) =
11 ... (* Omitted for brevity *)
12
13 transition choicePlayer1 (
14 sender: Address,
15 value: Uint32,
16 tag: String,
17 choice: String)
18 if let b1 = tag == "pp1" in
19 let b2 = sender == player1 in
20 b1 && b2
21 then
22 pc← p1Choice;
23 pm← payoffMatrix;
24 if (pc == "") && contains(pm, pc)
25 then
26 p1Choice := choice;
27 send {to : sender, amount : 0,
28 tag : "main", msg : "true"}
29 else
30 send {to : sender, amount : 0,
31 tag : "main", msg : "false"}
32 else
33 send {to : sender, amount : 0,
34 tag : "main", msg : "false"}

39 (* choicePlayer2 is similar *)
40
41 transition determineWinner (
42 sender: Address,
43 value: Uint32,
44 tag: String)
45 pm← payoffMatrix;
46 pc1← p1Choice;
47 pc2← p2Choice;
48 if not ((pc1 == "") || (pc2 == ""))
49 then
50 let p1cm = get(pm, pc1) in
51 let winner = get(p1cm, pc2) in
52 bal← balance;
53 if winner == 1
54 then
55 send {to : player1, amount : bal,
56 tag : "main", msg : "Congrats, P1"}
57 else
58 if winner == 2
59 then
60 send {to : player2, amount : bal,
61 tag : "main", msg : "Congrats, P2"}
62 else
63 send {to : owner, amount : bal,
64 tag : "main", msg : "Congrats, Owner"}
65 else
66 send {to : sender, amount : 0,
67 tag : "main", msg : "Not determined"}

Figure 6. A simplistic Rock-Paper-Scissors contract in idealised Scilla.

5.2 Properties of Multi-Party Games

The last contract we consider implements a version of the Rock-Paper-Scissors
game and is adapted from the experience report by Delmolino et al. [10]. to keep
things simple, in this implementation, we do not address a known vulnerability
allowing one of the parties to cheat, once they see a result submitted by the
competition. The contract implementation is parameterised with identities of
player1 and player2, as well as the contract’s owner. The payoffMatrix encodes
the outcome of the game depending on the results submitted by both player1

and player2, allowing to unambiguously determine the winner. The transition
choicePlayer1 allows Player 1 to submit their value; choicePlayer2 is similar and
is, therefore, omitted. The transition determineWinner can be invoked by anyone
and determines a winner based on the payoff matrix with a twist: if the players
submitted equal values, the award goes to the contract’s owner.

What can we specify about this game? We suggest the following properties:

P1. No other party besides player1, player2, or owner can be awarded the prize,
which is equal to the contract’s balance remaining constant before then.

P2. Each player can only submit their non-trivial choice once, and this choice
will have to be a key from payoffMatrix in order to be recorded in the
corresponding contract field.

13

As noticed before, we cannot express a property that would prevent either player
from cheating, given that the values of the fields are public, since this property
would not hold for this implementation. However, we envision that in a fixed
version of the contract [10], one can state it using a knowledge argument over
the prefix of an execution history observed so far [12].

6 Related Work

Temporal reasoning about smart contracts has not received much attention to
date, but we expect it some to become a popular research direction in the formal
methods community. Our proposal on Scilla [24] was amongst the first one to
emphasize the state transition system-like nature of smart contract in order
to facilitate reasoning about their behaviours, safety and temporal properties.
Other programming language proposals along the same lines of thinking are
Bamboo [4] and Obsidian [19]. That said, none of those languages has been
used to provide a framework for formal reasoning about contract executions.

The recently presented tool FSolidM [17] proposes a high-level modelling
framework for smart contracts based on state automata, targeting verification
of automata properties at the level of a model, rather than executable code.

The importance of being able to detect smart vulnerabilities, arising in from
violating safety and trace properties, has been realised in the blockchain com-
munity, and several automated tools have been recently released to tackle this
challenge. Amongst the most related to the ideas we discussed here, the tool
by Grossman et al. [11] implements a dynamic analysis of execution traces of
smart contracts with the goal to detect DAO-like vulnerabilities [9], manifested
by ill-formed reentrancy patterns [25]. Zeus by Kalra et al. [13] checks contract
source for user-defined safety properties; it does not address temporal properties,
though. The closest to our proposal is Maian by Nikolic et al. [18]. The tool
provides a static analysis for detecting bugs, violating certain trace properties,
which are expressed as instance of our predicate since_as_long (cf. Section 3.3)
for specific precondition p, side-condition r, and a postcondition q.

7 Conclusion

In this position paper we outlined some new avenues for applications of formal
methods for reasoning about temporal properties of smart contracts. We pre-
sented a verification framework, based on the Scilla smart contract program-
ming language, and sketched a number of critical properties for commonly used
smart contracts. We believe that our observations will stimulate research, and
allow effective reuse of existing results, tools, and insights for formally specifying
and verifying applications built on top of a distributed ledger .

References

1. BlockKing contract, 2016. Source code available at https://etherscan.io/

address/0x3ad14db4e5a658d8d20f8836deabe9d5286f79e1.

2. J. Alois. Ethereum Parity Hack May Impact ETH 500,000 or
$146 Million, 2017. https://www.crowdfundinsider.com/2017/11/

124200-ethereum-parity-hack-may-impact-eth-500000-146-million/.

14

https://etherscan.io/address/0x3ad14db4e5a658d8d20f8836deabe9d5286f79e1
https://etherscan.io/address/0x3ad14db4e5a658d8d20f8836deabe9d5286f79e1
https://www.crowdfundinsider.com/2017/11/124200-ethereum-parity-hack-may-impact-eth-500000-146-million/
https://www.crowdfundinsider.com/2017/11/124200-ethereum-parity-hack-may-impact-eth-500000-146-million/

3. N. Atzei, M. Bartoletti, and T. Cimoli. A Survey of Attacks on Ethereum Smart
Contracts (SoK). In POST, volume 10204 of LNCS, pages 164–186. Springer, 2017.

4. Bamboo, 2017. https://github.com/pirapira/bamboo.
5. K. Bansal, E. Koskinen, and O. Tripp. Automatic generation of precise and useful

commutativity conditions. In TACAS (Part I), volume 10805 of LNCS, pages
115–132. Springer, 2018.

6. T. Chen, X. Li, X. Luo, and X. Zhang. Under-optimized smart contracts devour
your money. In SANER, pages 442–446. IEEE, 2017.

7. Coq Development Team. The Coq Proof Assistant Reference Manual - Version
8.8, 2018. http://coq.inria.fr/.

8. T. Coquand and G. P. Huet. The calculus of constructions. Information and
Computation, 76(2/3):95–120, 1988.

9. M. del Castillo. The dao attack, 2016. 16 June 2016.
10. K. Delmolino, M. Arnett, A. E. Kosba, A. Miller, and E. Shi. Step by step towards

creating a safe smart contract: Lessons and insights from a cryptocurrency lab. In
FC 2016 Workshops, volume 9604 of LNCS, pages 79–94. Springer, 2016.

11. S. Grossman, I. Abraham, G. Golan-Gueta, Y. Michalevsky, N. Rinetzky, M. Sagiv,
and Y. Zohar. Online detection of effectively callback free objects with applications
to smart contracts. PACMPL, 2(POPL):48:1–48:28, 2018.

12. J. Y. Halpern and Y. Moses. Knowledge and common knowledge in a distributed
environment. J. ACM, 37(3):549–587, 1990.

13. S. Kalra, S. Goel, M. Dhawan, and S. Sharma. Zeus: Analyzing safety of smart
contracts. In NDSS, 2018.

14. L. Lamport. “Sometime” is Sometimes “Not Never” - On the Temporal Logic of
Programs. In POPL, pages 174–185. ACM Press, 1980.

15. L. Lamport. The part-time parliament. ACM TOPLAS, 16(2):133–169, 1998.
16. X. Leroy. Formal certification of a compiler back-end or: programming a compiler

with a proof assistant. In POPL, pages 42–54. ACM, 2006.
17. A. Mavridou and A. Laszka. Tool Demonstration: FSolidM for Designing Secure

Ethereum Smart Contracts. In POST, volume 10804 of LNCS, pages 270–277.
Springer, 2018.

18. I. Nikolic, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor. Finding The Greedy,
Prodigal, and Suicidal Contracts at Scale. CoRR, abs/1802.06038, 2018.

19. Obsidian, 2018. https://mcoblenz.github.io/Obsidian.
20. S. L. Peyton Jones. The Implementation of Functional Programming Languages.

Prentice-Hall, 1987.
21. A. Pnueli. The temporal logic of programs. In FOCS, pages 46–57. IEEE Computer

Society, 1977.
22. A. Sabry and M. Felleisen. Reasoning about programs in continuation-passing

style. Lisp and Symbolic Computation, 6(3-4):289–360, 1993.
23. I. Sergey and A. Hobor. A Concurrent Perspective on Smart Contracts. In 1st

Workshop on Trusted Smart Contracts, 2017.
24. I. Sergey, A. Kumar, and A. Hobor. Scilla: a Smart Contract Intermediate-Level

LAnguage, 2018. https://arxiv.org/abs/1801.00687.
25. E. G. Sirer. Reentrancy Woes in Smart Contracts, 2016. 13 July 2016.
26. Solidity: A contract-oriented, high-level language for implementing smart con-

tracts, 2018.
27. G. Wood. Ethereum: A Secure Decentralised Generalised Transaction Ledger,

2014. https://ethereum.github.io/yellowpaper/paper.pdf.

15

https://github.com/pirapira/bamboo
http://coq.inria.fr/
https://mcoblenz.github.io/Obsidian
https://arxiv.org/abs/1801.00687
https://ethereum.github.io/yellowpaper/paper.pdf

	Temporal Properties of Smart Contracts

